
1. Introduction

Ripples belong to small-scale bedforms that arise 
under lower flow regime conditions. In general, 
their height ranges from 0.3 to 6 cm and their length 
is in the range of 4–60 cm (Reineck & Singh, 1980; 
Ashley, 1990). They may be symmetrical or asym-
metrical. In the latter case, the stoss slope angle is 
relatively gentle in comparison to the lee slope an-
gle, which is close to the angle of repose (25–30°) for 
that saturated with water and the sand and coarse-
grained silt particles are 0.02–0.7 mm in size build-
ing these ripples. These small-scale bedforms are 
very diverse in their plan form. This is due to the 
fact that the first ones created were 2D ripples with 
straight crests, which together with the increasing 
flow velocity, are transformed into 3D ones with 

curved crests (e.g., Allen, 1968; Collinson, 1970; 
Blatt et al., 1980; Reineck & Singh, 1980; La Croix & 
Dashtgard, 2015; Baas et al., 2016).

Sandy current ripples are very common in most 
depositional environments (Allen, 1968; Hunter, 
1977; Blatt et al., 1980; Zieliński & Van Loon, 2000; 
Gruszka, 2001; Hadlari et al., 2006; Gruszka et al., 
2012; Allen et al., 2013; Pawłowski et al., 2013; Ziel-
iński, 2014; Kędzior, 2016; and references therein). 
The ripple cross-lamination indicates only that 
the water flow was unidirectional for current rip-
ples and flow velocity was less than 1 m/s (Ash-
ley, 1990). In the case of fine sand (0.063–0.25 mm), 
however, current ripples develop at a flow velocity 
of < 0.5 m/s (Baas, 1999). Conversely, other types 
of small-scale cross-lamination that are produced 
by moving ripples, made of alternating sandy and 
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muddy laminae, are much more interesting as far 
as their origin is concerned. These specific sedi-
mentary structures are as follows: climbing-ripple 
cross-lamination, flaser, wavy and lenticular bed-
ding. They are attributed to fluctuations in flow 
strength, variations in grain size of fine-grained 
sediments and concentration of suspended parti-
cles in flowing to near-stagnant water (e.g., Reineck 
& Wunderlich, 1968; Środoń, 1974; Ashley et al., 
1982; Ashley, 1990; Yokokawa et al., 1995; Martin, 
2000; Dalrymple, 2010; Fan, 2013; Zieliński, 2014; 
Kędzior, 2016), or may depend on the configuration 
of the depositional surface (Pasierbiewicz, 1982).

Until now, ripple cross-lamination was docu-
mented only occasionally within channel-filled de-
posits that represent an anastomosing river system 
of late Neogene age in central Poland (Widera et 
al., 2017). Other specific sedimentary structures, i.e., 
climbing-ripple cross-lamination and heterolithic 
bedding (flaser, wavy and lenticular), genetically as-
sociated with ripples, are described for the first time 
in the present paper. Therefore, the major goals of 
this research are twofold: to document ripple-related 
sedimentary structures from the palaeochannel of an 
anastomosing river and to provide evidence of their 
interpretative significance in term of flow conditions.

2. Geological setting

The channel-filled deposits studied outcrop in the 
Jóźwin IIB lignite opencast area. This territory cov-
ers the northernmost part of the relatively shallow 
Kleczew Graben, which is situated ~10–20 km north 
of Konin in central Poland (Fig. 1). The tectonic de-
pression, with Cretaceous limestones at their base, 
is filled with Neogene and Quaternary deposits. It 
is worth noting that the entire Paleogene and a sig-
nificant part of the Pliocene-Pleistocene are covered 
by stratigraphical gaps (Fig. 2), related to tecton-
ic uplift where erosion prevailed over deposition 
(Widera, 2007, 2014).

The Cenozoic evolution of the Kleczew Graben 
began at the Paleogene/Neogene transition. The 
Koźmin Formation (earliest to middle Miocene), the 
oldest lithostratigraphical unit, is up to a few tens of 
metres thick and consists of fluvio-lacustrine sand 
and silt deposits with lignite intercalations. Strata 
of the overlying Poznań Formation (late middle Mi-
ocene to earliest Pliocene) have traditionally been 
subdivided into two members, i.e., the lower Grey 
Clays Member (also termed the Mid-Polish Mem-
ber) and the upper Wielkopolska Member (Piwocki 
& Ziembińska-Tworzydło, 1997; Widera, 2007, 
2013) (compare Figs. 1C, 2).

The lignite-rich Grey Clays Member comprises 
mostly the first Mid-Polish lignite seam (MPLS-1), 
with siliciclastic intercalations, which is currently ex-
ploited by the Konin Lignite Mine. This lignite seam 
covers the middle part of the middle Miocene in age 
(~15 Ma) (Kasiński & Słodkowska, 2016; Widera et 
al., 2017), and has an average thickness of 6.6 m. It 
is currently assumed that the accumulation of peat, 
which then transformed into MPLS-1, took place in 
low-lying mires in the overbank zone of the middle 
Miocene fluvial system (Widera, 2016a, b). Overly-
ing is the mud-dominated Wielkopolska Member, 
with fluvial channel-fill deposits; the subject of the 
present research (compare Figs. 1B–E, 2). In the 
study area, the total thickness of the Wielkopolska 
Member changes from a few metres to more than 
20 m, and the maximum thickness of in-channel 
sediments attains 5–9 m. The fine-grained deposits 
(muds) are attributed to the overbank area, while 
the succession examined is attributed to the channel 
zone of middle Miocene–earliest Pliocene (< 13.5 
Ma) anastomosing river system in central Poland 
(Widera, 2013; Widera et al., 2017).

The Quaternary cover, with an average thickness 
of 40–50 m, overlies the Neogene succession (com-
pare Figs. 1C, 2). These deposits are mainly of glaci-
ogenic origin and include glacial tills, fluvioglacial 
gravels and sands, as well as glaciolacustrine muds 
and sandy muds (Widera, 2014; Widera et al., 2017).

3. Methods

In the opencast mines, exploited by the Konin Lig-
nite Mine, a few dozens of fluvial palaeochannels 
within the Wielkopolska Member have been docu-
mented. Sediments filling these were characterised 
by their common massiveness (Widera, 2012, 2013; 
Widera et al., 2017). In contrast, the palaeochannel 
that outcropped in 2017 at the Jóźwin IIB lignite 
opencast mine (Fig. 1D, E), contained a large num-
ber of sedimentary structures. During fieldwork, 
observations and descriptions have been made of 
small-scale structures that are associated with rip-
ples (Figs. 3–7). Additionally, 27 palaeocurrent 
measurements were made and 35 samples were 
collected for laboratory grain-size analyses.

The elongation (strike) of the palaeochannel 
measured in the summer/autumn of 2017 was 110–
290° with a depth of 9 m and a width of 150 m in a 
southerly-northerly direction. The recalculated true 
width was ~140 m. The examined ripple-related 
sedimentary structures were observed in the axial 
zone of the palaeochannel at about 2.3–2.6, 3.4–4.2 
and 6.4–6.8 m above its base (Fig. 1D).
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In the present study, the standard grain-size 
scale is used. According to the field classification of 
fine-grained deposits mud is defined as a sediment 
containing > 50 volume percentage of clay and silt 

(Lundegard & Samuels, 1980). The sediment de-
nominators were subsequently improved according 
to details from laboratory analyses. A conventional 
sieving technique has been used for sandy, non-co-

Fig. 1. Locality map and geology of the study area. A – Map of the Konin area in central Poland showing the location 
of the Jóźwin IIB lignite opencast mine in the Kleczew Graben area; B – Palaeochannel pattern inferred from bore-
hole data and geological mapping in the area of the Pątnów IV lignite deposits (modified from Widera et al., 2017); 
C – Simplified geological cross-section through the northern segment of the Kleczew Graben (the southernmost 
part of the Pątnów IV lignite deposits) with the approximate stratigraphical position of the palaeochannel studied 
(modified from Widera, 2014, Widera et al., 2017); D, E – Broad view and corresponding line-drawings of the palae-
ochannel. Note the location of the ripple-related structures within the palaeochannel examined
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Table 1. Selected lithofacies associations occurring within the channel-fill deposits that represent a late Neogene anas-
tomosing river system in central Poland

Lithofacies 
association Code Lithofacies Occurrence & description Interpretation

Lithofacies 
association 
of horizon-
tal lamina-
tion*

SMh Horizontally 
stratified 
muddy sand;

Various parts of channel-fill, except its 
lowermost and uppermost parts.
Relatively the largest lateral extent up to a 
few 10s m, but only up to 0.5–2 dm thick; 
with flat depositional or erosional base.

Predominantly tractional deposition 
from bedload transport; lower flow 
regime without evident erosion of 
underlying deposits ripples; sporad-
ically upper flow regime (= erosive 
base); water flow too strong for 
ripples and too shallow for dunes 
formation.

MSh horizontally 
stratified mud

Lithofacies 
association 
of massive 
sediments*

Sm Massive fine-
grained sand;

Both lithofacies are common in all parts of 
the palaeochannel, especially in its upper 
part.
Up to a few dm thick; massive structure; 
Sm – low content clay and silt, light grey 
in colour; SMm – rich in mud admixture, 
grey in colour; Sm and SMm pass often 
laterally and vertically to other small-scale 
lithofacies.

Hyperconcentrated to tractional 
flow; non- to weak tractional dep-
osition of pure sand or/and sand 
with a muddy admixture; first, from 
dense turbulent suspension, and 
then from weak traction by over-
bank floodwater drained back to 
palaeochannel; massive structure is 
due to well sorting and the lack of 
colour contrast; in most cases this 
structure was originally rippled.

SMm massive mud-
dy sand

Lithofacies 
association 
of ripple 
cross-lami-
nation*

Sr Ripple 
cross-laminat-
ed fine sand;

All parts of the palaeochannel.
Cross-stratified laminae sets are up to 5–6 
cm thick and co-set thickness reaches 1–3 
dm; Sr – almost pure sand, white in col-
our; STm – rich in silt, light grey in colour; 
SMr – rich in mud (clay and silt), grey 
in colour; these lithofacies form separate 
beds or co-exist with other small- and 
large-scale lithofacies.

Tractional deposition from bedload 
transport as small current ripples; 
lower part of lower flow regime; this 
association is very close to associ-
ation above-described (Sm, SMm), 
but tractional transport play here 
more significant role. 

STr ripple 
cross-laminat-
ed silty sand;

SMr ripple 
cross-lami-
nated muddy 
sand

Lithofacies 
association 
of climb-
ing-ripple 
cross-lami-
nation**

Src Climbing-rip-
ple cross-lam-
inated fine 
sand;

Both lithofacies occur occasionally in axial 
zone of the palaeochannel.
Individual cross-strata laminae sets are 
up to 2.5 cm thick; an angle of climb is 
< 10°; bases and tops are erosional; this 
association is underlain by lithofacies Sm 
and capped by various sandy lithofacies 
above an erosional surface; climbing-rip-
ple cross-lamination represents the A-type 
ripple.

Predominantly fine sand (Src) and 
occasionally a slight admixture of 
silt (STrc) is transported both in trac-
tion and suspension; lower part of 
lower flow regime; this lamination 
is formed during periods of waning 
flow (< 0.5 m/s) in water rich in 
suspended, mainly sandy load; the 
A-type ripples are created when the 
bed-load transport is higher than the 
suspended-load transport.

STrc climbing-rip-
ple cross-lam-
inated silty 
sand

Fig. 2. Stratigraphical sketch of the 
Cenozoic succession within the 
Kleczew Graben (modified from 
Widera, 2007, 2014). Note the 
stratigraphical position of the 
examined channel-fill deposits 
within the muddy Wielkopols-
ka Member of late Neogene age; 
MPLS-1 – the First Mid-Polish lig-
nite seam; for approximate posi-
tion of the lithological section see 
Figure 1C
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hesive deposits (27 samples), whereas for silty-clay-
ey, i.e. muddy, cohesive sediments (8 samples) the 
areometric method has been applied.

The classification of climbing-ripple cross-lam-
ination used here follows Jopling & Walker, (1968) 
and Allen (1973). Furthermore, the terminology of 
heterolithic bedding (flaser, wavy, lenticular) is that 
of Reineck & Wunderlich (1968). The letter code for 
sediment description is a compilation of those pro-
posed by various researchers (Miall, 1977; Ghibau-
do, 1992; Zieliński, 1995), in part supplemented and 
modified here. For grain size the following capital 
letters are applied: S – sand, M – mud, T – silt; while 
for sedimentary structures such lower-case letters 
are used: m – massive, h – horizontal, r – ripple, rc 
– ripple-climbing, f – flaser, w – wavy, and n – nod-
ular, i.e., lenticular. The list of lithofacies recognised 
in the present paper is shown in Table 1. According 
to the codification presented herein, for example, 
the lithofacies code STn means silty sand with a 
nodular (lenticular) lamination (Table 1).

4. Results

The sedimentary structures that are described and 
interpreted below have never been observed pre-
viously within the upper Neogene fluvial channels 
in central Poland. To achieve the objectives of the 
present study, by providing indirect evidence of 
extremely low-energy depositional environment, 
first will be characterised lamination resulting from 
relatively faster water flow and then from the slow-
er one. Thus, according to decreasing flow energy, 
they are as follows: climbing-ripple cross-lamina-
tion, flaser, wavy and lenticular bedding.

4.1. Climbing-ripple cross-lamination

4.1.1. Description
Climbing-ripple cross-lamination (rc) was doc-
umented sporadically within the palaeochannel 
deposits examined. In the present study two sets 
of climbing ripples are recognised (Fig. 3). Gener-
ally, the thickness of individual cross-strata sets is 
in the range of 1–2.5 cm and the angle of climb is 
less than 10°. The examples discussed here consist 
of sets of laminae that are evidently cut by erosion 
and individual ripples climbing one on the other. 
In both cases, they consist of fine sand (0.063–0.25 
mm) with an admixture of silt (0.002–0.063 mm), 
although in various proportions. This is manifest-
ed in such a way that the lamination is occasionally 
well visible due to the colour contrast between the 
more sandy and more silty laminae (Fig. 3A). On 
the contrary, the lamination is not clear and difficult 
to document photographically, when the content of 
grains of < 0.063 mm is negligible, they do not form 
a continuous laminae and mostly fill pores between 
sand grains (Fig. 3C).

4.1.2. Interpretation
The development of climbing-ripple cross-lamina-
tion (rc), often termed ripple drift cross-lamination, 
corresponds to a transition from erosional stoss to 
depositional stoss slopes of ripples. The examples 
described above (Fig. 3) represent type A of climb-
ing-ripple structures, as distinguished by Jopling 
& Walker (1968) and Allen (1973). In this case, the 
angle of climb is smaller than the stoss slope angle 
of the ripples, which means that their stoss slopes 
are erosional. Therefore, the lamination interpret-
ed is also referred to as subcritical climbing-ripple 
cross-lamination (Hunter, 1977).

Lithofacies 
association Code Lithofacies Occurrence & description Interpretation

Lithofacies 
association 
of het-
erolithic 
bedding**

Sf Fine sand 
with a flaser 
bedding;

Lithofacies are located in various parts of 
the palaeochannel with exception of its the 
lower- and uppermost beds.
They build up a few upward-fining cycles 
that are 0.1–0.6 m thick; these lithofacies 
are sometimes separated by the erosive 
surfaces; flaser bedding consists of con-
cave-up mud lenses, in the muddy-sandy 
matrix, which are up to 13.5 cm long and 
1 cm thick; wavy bedding is made of thin 
(up to 0.6 cm) muddy layers, that drape 
the sandy ripples; nodular/lenticular bed-
ding is built of sandy ‘lens-like’ nodules 
(up to 15 cm long and 1.5 cm thick) within 
the muddy-sandy matrix.

Heterolithic bedding, i.e. flaser, wavy 
and nodular/lenticular, is formed 
when water flow changes alternative-
ly; sandy layers (ripples) are depos-
ited when water flow is relatively 
fast (< 0.5 m/s), while muddy layers 
are deposited atop the ripples in 
intervals of slack to almost stagnant 
water; lowermost part of lower flow 
regime; this association shows cyclic 
repetition of lithofacies, which is a 
record of waning and very low-en-
ergetic flow conditions; the erosive 
surfaces are an evidence of the breaks 
in deposition and slight erosion.

Sw fine sand 
with a wavy 
bedding;

STn silty sand 
with a nodu-
lar (lenticular) 
bedding

* – lithofacies associations only mentioned in this research; ** – lithofacies associations examined in detail.
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Type A ripples with erosional-stoss slopes may 
be formed when deposition from bedload transport 
exceeds suspension. Moreover, it is created when 
ripples receive significant supply of clastic particles 
from suspension (Jopling & Walker, 1968; Allen, 
1973; Ashley et al., 1982).

4.2. Heterolithic bedding: flaser, wavy and 
lenticular (nodular)

4.2.1. Description
Flaser bedding (f) is located in all three portions 
of the sedimentary succession studied (Fig. 1D); 

however, its total thickness is negligible, i.e., 0.1–0.2 
m (compare Figs. 4, 7). This sedimentary structure 
is characterised by the presence of small lenses of 
mud within more coarsely grained deposits, e.g., 
muddy sand (Fig. 4). These muddy lenses are con-
cave upwards, up to 13.5 cm in length and up to 
1 cm in thickness and they discontinuously fill the 
depressions (troughs) between poorly visible rip-
ples. They consist predominantly of mud (clay and 
silt > 50%) and the rest is fine-grained sand, i.e. in 
the range 0.063–0.25 mm, as laboratory analysis has 
shown.

Wavy bedding (w) is characterised by alter-
nating, more or less continuous thick sandy and 
thin muddy layers within the channel-fill deposits 
studied (Fig. 5). In the present paper, there are two 
examples of wavy lamination. The first shows the 
location of wavy bedding at the boundary between 
sandy deposits at the base and muddy sediments at 
the top (Fig. 5A, B). The second example presents 
wavy bedding that is situated within the sandy de-
posits (Fig. 5C, D). In both cases, the lamination de-
scribed is marked by muddy layers that are more 
or less continuous and up to 0.6 cm thick. These 
muddy layers form a blanket that covers the sandy 
ripples (Fig. 5).

Lenticular, nodular bedding (n) is the common-
est cross-lamination among all small-scale sedimen-
tary structures examined in the present paper. Its 
thickness (~2.3 m) covers approximately 26% of 
the channel-filled succession, which attains close to 
9 m in thickness (Fig. 1D, E). This type of specif-

Fig. 3. Climbing-ripple cross-lamination. A, B – Sand and 
sandy-silt with climbing ripples; C, D – Sand with 
climbing ripples. Note the low angle of climb (< 10°) 
in both examples; flow direction is from left to right, 
numerals in circles indicate successive generations of 
climbing ripples; for explanation of lithofacies code 
see text and Table 1

Fig. 4. Flaser bedding. Note the discontinuous muddy 
layers, consisting of muddy infill of ripple troughs, 
surrounded by poorly laminated muddy sand. Note 
that discontinuous ‘lens-like’ muddy layers sur-
rounded by muddy sand; flow direction is almost 
perpendicular to the photograph; for explanation of 
lithofacies code see text and Table 1



 The interpretative significance of ripple-derived sedimentary structures within an upper Neogene fluvial succession 7

ic lamination consists of ‘lens-like’ coarser-grained 
sediments in a matrix of finer-grained material (Fig. 
6). In the present case, the lenses (nodules) consist 
of relatively pure, fine-grained sand, while the sur-
rounding material consists of muddy sand. These 
‘lens-like’, near-symmetrical structures are in fact 
fossilised ripples, seen parallel to the direction of 
their migration. The sandy nodules (lenses) are 
convex both upwards and downwards. Their max-
imum length and thickness are 15 and 1.5 cm, re-
spectively. These two examples, despite many sim-
ilarities, differ in proportions between the sandy 
lenses and sandy-muddy matrix. The first example 
of lenticular (nodular) bedding is very close to the 
above-mentioned wavy lamination, because the 
relative proportion between lenses and their sur-
roundings is almost equal (Fig. 6A, B). In the second 
example, however, the sandy-muddy matrix takes 
up several times more surface area than the sandy 
lenses of the section analysed in detail (Fig. 6C, D). 

Thus, the latter case represents typically formed 
lenticular bedding as originally defined by Reineck 
& Wunderlich (1968).

4.2.2. Interpretation
Differences in the formation of various types of 
heterolithic lamination are related to water flow ve-
locity and, as a result, to proportions between the 

Fig. 5. Wavy bedding. A, B – wavy bedding at the bound-
ary between the ripple cross-laminated sands and 
horizontally laminated muddy-sandy sediments; C, 
D – wavy bedding situated predominantly within rip-
pled sandy deposits with a muddy admixture. Note 
the relatively continuous muddy layers that drape 
the sandy ripple structures; flow direction is almost 
perpendicular to the photograph; for explanation of 
lithofacies code see text and Table 1

Fig. 6. Lenticular (nodular) bedding. A, B – lenticular 
bedding with a predominance of ‘lens-like’ sands; 
C, D – lenticular bedding with a predominance of 
muddy-sandy matrix. Note that ‘lens-like’ sands are 
surrounded by muddy sand; flow direction is almost 
perpendicular to the photograph; for explanation of 
lithofacies code see text and Table 1
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amount of muddy and sandy particles deposited. 
Therefore, the development and preservation of the 
sedimentary structures interpreted may occur un-
der alternating relatively fast and slow flow condi-
tions. At extremely low water stages the mud is laid 
down predominantly from suspension, while dur-
ing faster-moving water stages the sand-grained 
particles are deposited mainly from traction (e.g., 
Reineck & Singh, 1980; Martin, 2000). However, the 
latest laboratory results show that flow variability 
is not required to produce deposits that consist of 
alternating muddy and sandy laminae, i.e. flaser, 
wavy and lenticular bedding (Baas et al., 2016). 
Those authors have proved that small bedforms, 
composed of an admixture of sand and mud and 
characterised by heterolithic lamination, can be 
generated under rapidly decelerating flows.

In the case of heterolithic bedding examples 
shown here, the thickness ratio of sand to mud 
laminae varies from more than 20 – flaser bedding 
(Fig. 4), through ~5 – wavy bedding (Fig. 5) to less 
than 1 – lenticular (nodular) bedding (Fig. 6). Ad-
ditionally, an even thickness of mud layers in the 
case of wavy bedding (Figs. 5, 7) provides evidence 
that the extremely low-energy deposition was not 
interrupted by significant erosional events (Martin, 
2000).

In contrast to the explanation given above, flaser 
and wavy bedding may also form simultaneously in 
front of larger bedforms, e.g., 2D dunes, migrating 
under unidirectional flow conditions (Pasierbiew-
icz, 1982). In this case, however, the sedimentation 
surface on which sandy and muddy layers were 

laid down in the form of lenses and/or waves, must 
have been originally undulated. Thus, the ‘wavy’ 
morphology of the depositional surface may be re-
garded as a very significant factor to influence the 
structural development of flaser and wavy bedding 
(Pasierbiewicz, 1982). In contrast, wavy cross-lami-
nation can be formed during the final phase of the 
climbing process as type C ripples. Then, ripple mi-
gration stops and a muddy blanket atop of ripples 
is produced in very slow flowing or almost stand-
ing water only due to the fact that bed aggradation 
is caused by fallout from suspension (e.g., Jopling 
& Walker, 1968; Ashley et al., 1982; Zieliński, 2014).

5. Discussion

The ripple-related sedimentary structures stud-
ied may be grouped into ripple to climbing-ripple 
cross-lamination and heterolithic bedding (Fig. 8). 
The first group is predominantly homolithic; hence, 
it is built of pure sand grains and only occasionally 
contains a slight admixture of finer-grained parti-
cles. In contrast, the second group of heterolithic 
bedding, as the name suggests, is made of litho-
logically different laminae, i.e., sand and mud (> 
50 volume percentage of clay and silt). All of the 
small-scale structures tested are the result of dep-
osition both from traction and suspension. How-
ever, climbing-ripple cross-lamination is formed 
when processes of traction and suspension occur at 
the same time (Jopling & Walker, 1968; Allen, 1973; 
Hunter, 1977; Ashley et al., 1982; Allen et al., 2013).

Fig. 7. Co-occurrence of various types of heterolithic bedding. Note the upward transition from flaser (Sf), through 
wavy (Sw) to lenticular (STn) bedding within the sedimentary succession; flow direction is almost perpendicular to 
the photograph; for explanation of lithofacies code see text and Table 1
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Climbing-ripple cross-lamination is formed dur-
ing periods of waning flow in water that is rich in 
suspended sediment load. The climbing ripples 
studied are characterised by fine sand-grained par-
ticles, with a mean grain size of ~0.2 mm. In such a 
situation, fine sand is transported both in suspen-
sion and traction, when flow velocity was less than 
0.5 m/s (Baas, 1999).

In the case of heterolithic bedding (flaser, wavy, 
lenticular/nodular), these two processes occur al-
ternately and/or one substantially predominates 
over the other (Reineck & Singh, 1980; Yokokawa et 
al., 1995; Martin, 2000; Dalrymple, 2010; Fan, 2013; 
Kędzior, 2016). Here can be given at least two ex-
ceptions. The first exception explains the genesis of 
flaser and wavy lamination. Thus, under favoura-
ble flow and load conditions, these beddings can 
also be created simultaneously, as described above 
(Pasierbiewicz, 1982). The second exception is that 
given by Baas et al. (2016), who provided experi-
mental evidence that the heterolithic lamination, 
made of an admixture of sand and mud, can be 
produced in rapidly decelerating flows. In the case 
of the late Neogene river system under investiga-
tion, this situation may have occurred, for example, 
when floodwaters returned to the river channels.

Heterolithic bedding does not indicate a spe-
cific depositional environment, but provides ev-
idence of its very low energy and the presence of 
grains of various sizes. In addition, it proves short-
term changes from slow current to almost stagnant 
water. Fine sand is transported during times of a 
relatively faster-moving flow (< 0.5 m/s), but still 

very slow, and creates ripples. On the other hand, 
during intervals of almost stagnant water (~0 m/s) 
mud, i.e. clay and silt, is deposited between ripples 
or drapes these. Depending on the proportion be-
tween sand and mud, flaser (sand > mud), wavy 
(sand ≈ mud) and lenticular/nodular (sand < mud) 
bedding arises, respectively (Reineck & Wunder-
lich, 1968; Reineck & Singh, 1980) (Fig. 8).

The heterolithic lamination examined has been 
documented for the first time among upward-fining 
co-sets of laminae that fill the fluvial palaeochannel 
of late Neogene age in central Poland. Thus, flaser 
bedding is located at the base, wavy bedding in the 
middle and lenticular bedding at the top of these 
co-sets (compare Figs. 7, 8). This is evidence of ep-
isodic repetition of the same sedimentation cycles, 
which are obviously a record of a low-energy but 
waning flow. Such upward-fining successions may 
also be produced by weak storms, episodic flood-
ings, ephemeral or intermittent streams (e.g., Rei-
neck & Singh, 1980; Martin, 2000; Dalrymple, 2010; 
Fan, 2013; Kędzior, 2016).

Considering the subdivision of fluvial systems 
only deposits of anastomosing channels can be 
characterised by water flows from flood stages to 
extremely low energy. The first of them are docu-
mented, among others, by deeply incised (~9 m) the 
palaeochannel in muddy floodplain – ~8 m and in 
lignite seam – ~1 m (Fig. 1D, E) and the presence 
of layers with cross-lamination at various scales; 
however, such are beyond the scope of the present 
paper. On the other hand, the above-mentioned 
very low-energy flows are represented precisely by 

Fig. 8. Simplified diagram showing 
the relationship between traction 
and suspension processes, as well 
as between sand and mud content 
during formation of ripple-de-
rived sedimentary structures. For 
explanation of lithofacies code see 
text and Table 1.
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the specific ripple-derived sedimentary structures 
studied here, i.e., climbing-ripple cross-lamination 
and heterolithic bedding (flaser, wavy, lenticular/
nodular).

Finally, it should be noted that, in general, the 
occurrence of climbing ripples, but predominantly 
heterolithic bedding (Martin, 2000), is seldom re-
ported from fluvial channel deposits (Table 2). In 
contrast, these ripple-related structures are com-
mon in the overbank zone of the sand-bed braid-
ed and meandering rivers. Therefore, the relatively 
high frequency of climbing-ripple and heterolithic 
structures, within the palaeochannel studied, is 
characteristic of low-energy anastomosing rivers 
(Table 2).

6. Conclusions

In 2017, due to mining activity, a palaeochannel 
within upper Neogene muddy deposits was ex-
posed in the area of shallow tectonic graben in cen-
tral Poland. Unexpectedly, within the channel-fill 
sediments, in addition to widespread massive 

structure and cross-lamination at various scales, 
appeared sandy-muddy sedimentary structures ge-
netically related to the migration of ripples.

The structures with small-scale cross-lamina-
tion examined are characterised by climbing-ripple 
cross-lamination and heterolithic bedding, that is, 
flaser, wavy and lenticular (nodular). They formed 
by deposition from both traction and suspension 
that may have occurred simultaneously (climb-
ing-ripple cross-lamination) or alternately (het-
erolithic bedding). These types of lamination are 
evidence of a very low-energy depositional envi-
ronment, when flow velocity was from less than 0.5 
m/s to almost stagnant water, respectively.

In summary, the presence and preservation of 
specific ripple-derived sedimentary structures indi-
cate that the flow in the channel changed periodi-
cally, but it was still extremely slow. The lamina-
tion studied, in particular the heterolithic bedding, 
formed in very slow flowing to almost stagnant wa-
ter. Therefore, we believe that among the various 
types of rivers, only in anastomosing channels do 
conditions exist for the formation of ripple-derived 
sedimentary structures as the ones described here.

Table 2. Comparison of occurrences of climbing-ripple cross-lamination and heterolithic bedding among sediments 
representing various sub-environments of the main types of rivers

River type Sub-environments of a river Selected references
Braided
(mainly sand-bed 
braided river)

braidplain (floodplain):
 – common in lower parts of the sedimentary 

successions filling flood basins

Cant (1978), Cant & Walker (1978), Tanner & 
Hubert (1992), Singh et al. (2013)

braided channels:
 – present in secondary channels during final 

waning stages or in abandoned channels, or in 
channel pools during low-water stages

Rust (1978), Abdullatif (1989), Rust & Gibling 
(1990)

 – rare at tops of mid-channel bars or compound 
bars

Doeglas (1962), Bridge & Lunt (2006)

natural levees:
 – present in natural levees of transitional river 

(braided-to-meandering)

Huisink (1997)

Meandering meandering channels:
 – common at uppermost parts of the abandoned 

channel fills

Kraus & Middleton (1987), Kozarski et al. 
(1988), Moskalewicz et al. (2016), 

 – present in point-bar successions, especially at 
their tops

Stewart (1981)

crevasse splays:
 – present in various parts of the crevasse splays

Allen (1964), Gębica & Sokołowski (2001), 
Moskalewicz et al. (2016), Burns et al. (2017)

natural levees:
 – present in natural levee successions, especially 

at their tops

Allen (1964), Nemec (1984), Tye & Coleman 
(1989)

Anastomosing anastomosing channels:
 – very common at different levels in the chan-

nels, especially in the upper parts of successions

Woodyer et al. (1979), Makaske (1998, 2001), 
Gradziński et al. (2003a, b)

natural levees and crevasse splays:
 – present in these both forms

Nadon (1994), Smith & Pérez-Arlucea (1994)
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