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Abstract

X-ray computed tomography (CT) can reveal internal, three-dimensional details of objects in a non-destructive way and 
provide high-resolution, quantitative data in the form of CT numbers. The sensitivity of the CT number to changes in 
material density means that it may be used to identify lithology changes within cores of sedimentary rocks. The present 
pilot study confirms the use of Representative Elementary Volume (REV) to quantify inhomogeneity of CT densities 
of rock constituents of the Boda Claystone Formation. Thirty-two layers, 2 m core length, of this formation were stud-
ied. Based on the dominant rock-forming constituent, two rock types could be defined, i.e., clayey siltstone (20 layers) 
and fine siltstone (12 layers). Eleven of these layers (clayey siltstone and fine siltstone) showed sedimentary features 
such as, convolute laminations, desiccation cracks, cross-laminations and cracks. The application of the Autoregressive 
Integrated Moving Averages, Statistical Process Control (ARIMA SPC) method to define Representative Elementary 
Volume (REV) of CT densities (Hounsfield unit values) affirmed the following results: i) the highest REV values corre-
sponded to the presence of sedimentary structures or high ratios of siltstone constituents (> 60%). ii) the REV average 
of the clayey siltstone was (5.86 cm3) and (6.54 cm3) of the fine siltstone. iii) normalised REV percentages of the clayey 
siltstone and fine siltstone, on the scale of the core volume studied were 19.88% and 22.84%; respectively. iv) whenever 
the corresponding layer did not reveal any sedimentary structure, the normalised REV values would be below 10%. The 
internal void space in layers with sedimentary features might explain the marked textural heterogeneity and elevated 
REV values. The drying process of the core sample might also have played a significant role in increasing erroneous 
pore proportions by volume reducation of clay minerals, particularly within sedimentary structures, where authigenic 
clay and carbonate cement were presumed to be dominant. 

Key words: Hounsfield Unit (HU), Autoregressive Integrated Moving Averages (ARIMA), Statistical Process Control 
(SPC) technique
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1. Introduction

In the early 1970s, the Hounsfield’s X-ray CT pro-
totype (Hounsfield, 1973) generated tremendous 
excitement within the medical community. The CT, 
or CAT, was the first imaging modality to allow ac-
curate, non-destructive interior image reconstruc-
tion of an object from a sufficient number of X-ray 
projections, i.e., reconstructions of 3D bones and 
soft-tissue images. 

In view of the fact that CT proved to be able to re-
veal precisely and accurately the spatial distribution 
of the inner structure of objects examined and pro-
vide unrivalled information about materials from 
scale lengths of metres, down to tens of nanometres, 
CT application has become unlimited. As a conse-
quence, numerous geoscientific studies incorpo-
rate CT scan analysis, such as investigations of soil 
moisture content, mineralisation layers in manga-
nese nodules, local structure of marine sedimentary 
rocks or coal composition. Such methods were also 
applied to study the mechanical rock properties, and 
residual oil distribution in carbonate or clastic cores 
(e.g., Garvey & Hanlon, 2002; Sutton et al., 2002; Van 
Kaick & Delorme, 2005; Cnudde et al., 2006; Louis 
et al., 2007). In addition, complexities of geological 
formations, including bedding features, sedimen-
tary structures and coring-induced fractures, ce-
ment distribution, small-scale grain size variations 
and density variation at scales of core samples have 
been analysed by using this technique (e.g., Coles 
et al., 1991, 1998). CT scanning is also employed to 
determine the quality of subsurface materials (e.g., 
heterogeneity, damages, presence of fluids) and to 
gain insight into physical properties of cores (bulk 
density, porosity and fluid saturations) (Coles et al., 
1991; Cnudde et al., 2013; Gang et al., 2019). Efforts 
have also been made to use CT scanning in order to 
understand fluid displacement and relative perme-
ability of core material from reservoirs (Hove et al., 
1987; Vinegar & Wellington, 1987; Withjack, 1988).

The scale of observation is a fundamental aspect 
in modelling material behaviour or deriving its ef-

fective macroscale parameters from the constituent 
relations governed by the spatial distribution of its 
components. Any given sample (i.e., rock sample) 
can be considered homogeneous when the scale of 
observation is large enough to obtain constant pa-
rameters of concern (Russo & Jury, 1987; Webster, 
2000). Various geological processes such as deposi-
tion, diagenesis, erosion and structural deformation 
that ultimately control the geometry of sedimenta-
ry deposits leads to heterogeneity in rock bodies 
(Brown et al., 2000). Accurate determination of 
rock heterogeneity is critical for a variety of indus-
trial applications. For instance, it plays a key role 
in determining the reservoir’s ability to recover oil 
and gas (Russo & Jury, 1987; Chang & Gao, 1995; 
Muhlhaus & Oka, 1996; Webster, 2000), carbon ge-
ostorage efficiency (Feyel & Chaboche, 2000; Peer-
lings & Fleck, 2001; Kouznetsova et al., 2001, 2002), 
contaminant mitigation and natural source zone de-
pletion (Bear & Bachmat, 1990; Clausnitzer & Hop-
mans, 1999), water discharge and extraction rates 
(Brown et al., 2000; Baveye et al., 2002) or geother-
mal energy production feasibility (e.g., Al-Raoush 
& Willson, 2005). It is thus essential to understand 
rock heterogeneity in detail so as to make reliable 
predictions or process optimisation.

One of the methods for quantifying heterogene-
ity is to use the Representative Elementary Volume 
(REV (Fig. 1). The REV of a rock mass is defined as 
the smallest volume over which the studied param-
eter (in this case, density), yields a constant value 
(Long et al., 1982; Shapiro & Andersson, 1983; Blum 
et al., 2007). The present study aims to quantify and 
evaluate the minimum volume of a core sample of 
the of Boda Claystone Formation (Permian, S Hun-
gary), that can capture a representative quantity of 
its physical heterogeneity (i.e., density). Three ma-
jor routes were followed to fulfil the above target: i) 
based on the dominant rock-forming components, 
rock types were detected as consecutive thin layers; 
the average HU (Hounsfield Unit) of rock constit-
uents was calculated for each of these, ii) the ARI-
MA SPC technique was applied to compute REV 

Fig. 1. Definition of the Representative Ele-
mentary Volume, REV (after Bear, 1972).
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values of layers defined, iii) Computed REV values 
were generalised using the Monte-Carlo simulation 
method.

2. CT scans: basic principles and 
applications

2.1. CT principle

The theoretical foundations of computed to-
mography (CT) were established by Cormack & 
Hounsfield (1989). Subsequent developments in CT 
technology have led to the introduction of new in-
struments, such as spiral CT (1989), multi-slice CT, 
micro-CT, nano-CT (1998) and multi-slice CT with 
double X-ray tubes (Garvey & Hanlon, 2002). 

CT measures the X-ray linear attenuation co-
efficient of an object from different directions and 
produces several cross-sectional images of the vol-
ume measured. The linear attenuation coefficient is 
a function of both electron density (bulk density) 
and the effective atomic number. Akin & Kovscek 
(2003) pointed out that for X-ray energies above 100 
kV, the CT image was proportional to density and 
for those well below 100 kV, it was proportional to 
effective atomic number.

A single CT scan image is produced using a 
mono-energetic X-ray. As each X-ray beam passes 
through the sample, it attenuates varyingly, and 
the transmitted X-ray is received by a detector 
(Hounsfield, 1973). The X-ray attenuation depends 
on X-ray energy and effective atomic density of the 
sample and can be determined using Beer Lambert’s 
law (Equation (1)). Each rotation of the X-ray source 
around the sample produces a cross-sectional im-
age, which can then be stacked to form a 3D volume.

 I = I0 e
−(μd) (1)

where I is the intensity of the transmitted X-ray, Io 
is the initial X-ray intensity, μ is the linear X-ray 
attenuation coefficient and d is the length of the 
X-ray path inside the object. When X-ray energy 
and intensity are kept constant, linear attenuation 
of X-ray occurs as a function of density, result-
ing in sensitivity of CT images to density changes 
(Heismann et al., 2003; Duchesne et al., 2009). Series 
of X-ray attenuation measurements are numerically 
processed (reconstructed) so as to show the spatial 
distribution of X-ray attenuation coefficients within 
the sample.

The signal at each point in the reconstructed im-
ages, referred to as the CT number, is expressed in 

Hounsfield units. The Hounsfield unit (HU) scale 
is a linear transformation of the original linear at-
tenuation coefficient measurement into one in 
which the radiodensity of distilled water at stand-
ard pressure and temperature (STP) is defined as 
zero Hounsfield units (HU), while the radiodensi-
ty of air at STP is defined as −1000 HU. The corre-
sponding HU value is therefore given by:

 
3

HU = 10  × 
μ − μw

μw  (2)

where μ is the attenuation coefficient of the meas-
ured material, μw being the attenuation coefficient 
of water. Each Hounsfield unit (HU) represents a 
0.1% change in density with respect to the calibra-
tion density scale. If the measurement is calibrat-
ed to water, this yields HU=0 for water and HU 
=−1000 for air. 

The default output of a CT scan is a grey-scale 
2D image. In such an image, each pixel contains an 
HU-value associated with the average density and 
composition of the material in a given volume be-
hind the pixel. From these scans, a 3D-tomographic 
image can be generated (e.g., Herman, 2009).

In general, tomography is a technique that 
generates a data set (images), called a tomogram, 
which is a three-dimensional representation of the 
structure and variation of composition within a 
rock specimen. Each 3D element in the tomogram 
is called a voxel and contains an average coefficient 
value (HU). Voxel size equals pixel size by slice 
thickness. The resolution of the CT image pro-
duced depends on the scanner used. Fine details 
can be detected from the highest resolution. CT im-
age resolution or spatial resolution is estimated by 
measuring the two nearest distinguishable objects 
in a two-dimensional CT image (Taud et al., 2005; 
Herman, 2009).

Measurements with X-ray CT are subject to a 
range of errors and image artifacts, including Beam 
hardening, star-shaped, positioning error and ma-
chine error. These artifacts and the techniques used 
to minimise them were discussed in full by Van 
Geet et al. (2000), Ketcham & Carlson (2001) and 
Akin & Kovscek (2003).

With a given attenuation data set (tomograph-
ic image), images can be further manipulated by 
changing the viewable window settings in order 
to accentuate specific contrast differences (Földes 
et al., 2004; Wesolowski & Lev, 2005; Földes, 2011). 
Another essential feature of these types of analyses 
is the availability of a quantitative background data 
set that can be analysed by applying various statis-
tical or geostatistical methods.
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2.2. Applied CT scans

CT measurements of about 2 m-long core samples 
were performed on a Siemens Emotion 6 medical 
scanner at the Institute of Diagnostic Imaging and 
Radiation Oncology, University of Kaposvar, Hun-
gary. The instrument operates at 120 kVp (peak kilo-
voltage), with 250 mAs (milliampere-seconds) cur-
rent, 1.0 s (sampling intervals). The lateral resolution 
was (0.1953 x 0.1953) mm2 with 1.25 mm of scan-slice 
thickness. The image reconstruction matrix was 512 
x 512 pixels. The field of view (FOV) was approxi-
mately 9.99 cm. CT images are stored in a DICOM 
(Digital and Imaging Communications in Medicine) 
format. A DICOM file contains in its metadata the 
scanning parameters and scanned object identifica-
tion under different attributes. Of these metadata, 
the PixelSpacing and SliceThickness attributes are im-
portant for geoscientific applications as they record 
the dimension (in millimetres) of each voxel in the x, 
y, and z-direction. Each CT number can be assigned 
a real-world distance (or depth), allowing CT num-
ber profiles to be constructed so that depth and ge-
ometrical measurements can be calculated. DICOM 
images are be easily read by ‘classical’ 3D volume 
rendering softwares (Abutaha et al., 2021). 

Scans were made using a modified dual-scan-
ning approach (Balázs et al., 2018). The dry core 

material was first placed in a vacuum tube. After 
six hours of vacuuming, whole-core CT scans were 
made (dry condition). In the next step, the core ma-
terial was saturated with water. After one hour of 
relaxation, the scanning process was repeated in the 
same position of the same measured slice (flooded 
or evacuated condition). The laboratory guaranteed 
that the DICOM files were free of any artifacts and 
that during the second scan the same pixels were 
measured as during the first one. For the present 
paper, we focused on the analysis of vacuumed 
(dry) scanned slices alone. 

3. Core sample: location and lithology

The rock formation studied belongs to the Permi-
an fluvial sedimentary sequence named the Boda 
Claystone Formation (BCF), which is situated in the 
western Mecsek Mountains of southern Transdanu-
bia (southern Hungary) (Fig. 2) and covers an area 
of 150 km2, ten per cent of which is found in out-
crop. Low porosity, appropriate hydraulic conduc-
tivity and absence of organic residues are charac-
ters which favoured the BCF as a potential disposal 
repository rock formation for high-level nuclear 
waste (HLW) in Hungary. The BCF was deposit-
ed in a shallow-water, salt-lake environment sur-

Fig. 2. A – Distribution of Boda Claystone Formation sequences in the Mecsek Hills area (after Haas & Péró, 2004); B – 
The studied core site, Ibafa 4 (Ib-4), marked by a red star in the upper left-hand corner.
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rounded by dry to saline mudflats under semi-arid 
to arid climatic conditions (Barabás & Barabás-Stu-
hl, 1998; Máthé, 1998; Árkai et al., 2000; Varga et al., 
2005; Máthé & Varga, 2012).

The BCF has two outcrop distributional areas: 
the western Mecsek mountain (a peri-anticlinal 
structure) and the Gorica block. In the latter area, 
a single borehole (Ib-4), which reached a depth of c. 
200 m, is available for detailed studies. Recent strati-
graphical studies have shown that the BCF, general-
ly speaking, starts with fine-grained sandstone beds 

at the base; these are overlain by albitic claystone/
siltstone, with successive claystone, albitic clayey 
siltstone and silty claystone with dolomite at the 
top (Konrád et al., 2010). The underlying Cserdi 
Formation (Upper Permian) consists mainly of red-
dish-brown conglomerate, unsorted, matrix-sup-
ported sandstone and siltstone beds, representing 
debris flow-dominated alluvial deposits (Barabás & 
Barabás-Stuhl, 1998). The stratigraphical position of 
the core sample studied within the entire cored sec-
tions is shown in Figure 3. 

Fig. 3. The two cores studied by CT in the entire cored section of the well Ib-4. Abbreviations: Hg Poro = Mercury Po-
rosity, Den = Density log, TG = Natural Gamma log. 
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Following the co-operation between the Uni-
versity of Szeged, GEOCHEM and the Public Lim-
ited Company for Radioactive Waste Management 
(PURAM), the raw data sets of dry and flooded CT 
measurements of 0.89 m and 10.54 m on the Ib-4 
well material were transferred to the University of 
Szeged for further scientific research. 

4. Methodology

Figure 4 outlines the workflow applied to obtain the 
REV of the core sample studied.

4.1. Pre-processing

A 3D-nearest neighbour algorithm was used to 
build the 3D volumes of the scanned dry core sam-
ple. This algorithm regulates the CT scan grids be-
neath each other to emulate the actual stratigraph-
ical position. Although the output of computed 
tomography lends itself to straightforward inter-
pretation, so-called scanning artifacts may obscure 
details of interest or cause the CT value of a single 
material to change in different parts of an image. 
The most commonly encountered artifact in CT 
scanning is beam hardening. Various methods have 
been developed to reduce or remove the effects of 
beam hardening (Van Geet et al., 2000: Ketcham & 
Carlson, 2001; Akin & Kovscek, 2003). One of these 
is the so-called “subset” CT volumes in which the 
image’s outer edges are removed and only central 
volumes of the original three-dimensional images 
are used for quantitative analysis. 

For the identification of rock-forming compo-
nents of the core sample, CT HU intervals defined 
by PURAM for characteristic rock types of the BCF 
were used as follows: detrital fragments (coarse 
siltstone): <2700 HU, fine siltstone: 2700-3150 HU, 
claystone: 3150-3300 HU, calcite and /or dolomite: 
3300-3600 HU, and albite: >3600 HU (Abutaha et 
al., 2021). The reality of the rock-forming compo-
nents was compared with macroscopic core de-
scriptions.

4.2. Quantitative analysis of CT volume

As X-ray attenuation is dependent on density, 
voxel values can be used to make millimetre-scale 
measurements of bulk density in a non-destructive 
way. In the present paper, we use the term density 
or CT-density as a synonym of HU. Calculation of 
the relative percentages of the rock-forming com-
ponents for each layer was a requisite of the vertical 
subdivision of the studied core volume (Fig. 4). Af-
ter averaging the compositional data by layers, the 
dominant rock-forming component lent the name 
of the rock type to the corresponding layer (Fig. 5; 
Table 1).

Linear correlation coefficients were calculated 
between any two pairs of rock-forming compo-
nents averaged over a set of layers (Fig. 4). In the 
depiction of the correlation structure, the cutoff 
value was r2=|0.7|. That is, only those correlations 
where 50 per cent of the variance in a variable was 
predictable from the other one were regarded to be 
important relations.

Fig. 4. The workflow. 
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4.3. REV calculations

The REV for the layers chosen was performed by 
computing multiple incremental HU volumes in 
each layer. The process started with a cubic volume 
centred in the left-hand corner of the image. The 
volume was then expanded gradually by radial in-
crements. The average of the acquired HU volumes 
was then computed and plotted on a chart of Statis-
tical Process Control.

Statistical Process Control (SPC) is a family of 
methods to monitor and control a process using 
statistical methods (Shewhart, 1931; Montgomery, 
1997; Oakland, 2003; Geiger, 2018). The objective 
was to detect anomalous values of the variable(s) 
analysed. In general, according to a certain toler-

ance margin and an objective value, two control 
limits, an upper control limit (UCL) and a lower 
control limit (LCL), are defined (Fig. 6). 

Their practical definitions depend on the type 
of SPC applied. If the measurements are within the 
UCL and LCL, there is not a non-random pattern in 
the distribution, and the process is under statistical 
control (Fig. 6). However, if there are points (meas-
urements) outside the limits, then for these points, 
the process is not controlled (Montgomery, 1997; 
Russo et al., 2012; Geiger, 2018).

From the model describing the change of aver-
age HU in the gradually increasing voxel volumes 
the “objective value” was derived. The tolerance 
margins, UCL and LCL, were calculated from the 
variance of actual data around the model curve. In 

Fig. 5. Rock-forming components and boundaries of layers defined.
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this way, the REV was the voxel volume number 
of realisations from which all HU values ended up 
being controlled (Figs 6, 7D).

In general, the practice of SPC analysis consisted 
of three steps: understanding the process and speci-
fication limits, elimination of special sources of var-
iations and monitoring the ongoing process (Pol-
hemus 2005). In the present study, the last step is 
not used. Normally, SPC works under the assump-
tion that the data observed are independent. How-
ever, in our case, a continuous transition violating 
independence between the different rock-forming 
components must be assumed. ARIMA (AutoRe-
gressive Integrated Moving Average) charts are 
designed to handle suchsituations (e.g., Box et al., 
1994; Polhemus, 2005; Russo et al., 2012). In their 
most general form, ARIMA (p, d, q) models consist 
of three characteristic terms: (1) a set of autoregres-
sive terms (denoted by p), (2) a set of moving aver-
age terms or non-seasonal differences (denoted by 
d), and (3) a set of lagged forecast errors in the pre-
diction equation (denoted by q). The general form 
of the model is as follows (Polhemus, 2005):

 Yt = μ + φ1Υt − 1 + φ2Υt − 2 + ... + φpΥt − p + at − 
 θ1at − 1 − θ2at − 2 − ... − θqat − q (3)

where μ is the constant, φk, is the autoregressive 
coefficient at lag k, θk, is the moving average coef-
ficient at lag k, and at − a is the forecast error that 
was made at period . The ARIMA charts procedure 
creates control charts for a single numeric variable 
where data have been collected either individually 
(this version was used here) or in subgroups. The 
out-of-control signals are based on the deviations 
of the process from this dynamic time series mod-
el (Fig. 6). In this chart, the data are drawn around 
a centreline located at the expected value, μ, with 
control limits at 

 μ ± k × σ 2 (4)

In the present study, k = 1. The mean and stand-
ard deviation depend on the ARIMA model speci-
fication (Polhemus, 2005). Figure 7 demonstrates a 
typical example of the applied analysis with ARI-
MA charts for the first layer shown in Figure 5. In 
Figure 7A, the components of the fitted ARIMA 
(1,0,0) model are shown. The explicit form of this 
model is a linear combination of a constant, one au-
toregressive term, and an error term (Fig. 7B). The 
calculated centreline (average) and the UCL and 
LCL lines are shown in Figure 7C. Finally, in Figure 
7D, the ARIMA chart can be seen, where the red 
dots indicate those parts of the series where severe 
deviations can be detected from the ARIMA (1,0,0) 
model (Fig. 7C). From the 15th incremental step, a 
series of averaged HU values are within the en-
velopes (UCL and LCL). That is, the CT densities 
are fully controlled. Consequently, the REV can be 
identified as the volume behind the 15th incremental 
step (1.25 cm3).

Calculations detailed above were performed 
for each of the 32 layers. A particular REV value 
obtained may depend on the volume of the cor-
responding layer, which makes the comparison 
complicated. To circumvent this problem, the REV 
values were normalised by the corresponding layer 
volumes (Table 3). In this way, the REV could be 
expressed as the volume percentage of the studied 
subvolume (layer).

A Monte Carlo simulation uses repeated sam-
pling to obtain the statistical properties of some 
phenomena. Gordon et al. (1993) published the first 
application of a Monte Carlo resampling algorithm 
in Bayesian statistical inference: the bootstrap filter. 
The bootstrap algorithm did not require any as-
sumption about the state-space or the noise of the 
system.

Fig. 6. The SPC chart.
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The Monte Carlo simulation focuses on con-
stantly repeating random samples to achieve cer-
tain results. Once the simulation is complete, the 
results are averaged to provide an estimate. We 
applied this approach to simulate 1,000 outcomes 
of the REV calculated for each rock type. By doing 
so, we assumed that those parts of the core studied 
fairly and representatively described the composi-
tion of the rock types of the entire core (Table 4).

5. Results

5.1. Quantitative analyses of rock types

Based on the relative frequencies of compositional 
data, 32 thin layers (abbreviated as L) were defined 
throughout the 2-m core sample (Fig. 5; Table 1). 
Each 3D brick of the dry scans included five rock 
constituents. They were (1) detrital fragments (HU 
<=2700), (2) fine siltstone (2700 HU-3150 HU), (3) 
claystone (3150 HU-3300 HU), (4) dolomite, and 
calcite cement (3300 HU-3600 HU), and (5) albite 
(HU>3600). Based on the most frequent rock-form-
ing constituent we could classify the stacked slices of 
CT volumes into relatively thin consecutive layers.

The layer-averaged compositional frequencies 
showed the variability of the fine siltstone com-
ponent to be very high (from 39% in layer L17 to 
64.84% in layer L27), while that of claystone is sig-
nificantly smaller (from 29.6% in layer L27 to 39% 
in layer L2). The average carbonate content may 

vary between 10% (in layer L28) and 22.5% (in layer 
L10). The abundance of albite and detrital fragment 
constituents is relatively low; their averages do not 
exceed 1%. Based on the dominant rock-forming 
constituent, two rock types could be defined: clayey 
siltstone and fine siltstone (Table 1). The dominant 
sedimentary structures of the clayey siltstone lay-
ers are convolute laminations, desiccation cracks 
with diagenetic calcite precipitations and dolomite 
lenses. The fine siltstone layers are characterised by 
cross-laminations with parallel set boundaries, with 
abundant albite nests appearing on the bedding 
surfaces, as well as synsedimentary faults (Table 1). 

The linear correlation coefficients calculated be-
tween each pair of the rock-forming components 
show a feedback system among the fine siltstone, 
claystone and carbonate components. In the feed-
back, the higher the fine siltstone frequency, the 
smaller the claystone and carbonate content. The 
albite can linearly be related only to the carbonate 
content (Table 2).

5.2. REV calculations of CT density

As shown in Table 3, the REV values range from 
0.7514 cm3 up to 13.1072 cm3. The data of Table 3 
show that the largest REV values correspond to the 
presence of sedimentary structures (e.g., L9 and L11 
in Table 3). Alternatively, such large REVs can be 
related to the highest (> 60%) siltstone constituent 
(e.g., L15 and L16 in Table 3). It can also be conclud-

Fig. 7. An example of the applied ARIMA charts. A – Parameters of the selected model; B – The explicit form of the 
selected model; C – Parameters of the ARIMA chart; D – ARIMA chart with the indication of the volume step where 
the REV can be defined.
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Table 1. Averaged compositional data by layers of the CT volumes. 

Layer 
no.

Thick-
ness 
(cm)

Averages of rock-forming components %
Rock type Sedimentary featuresDetrital 

fragment
Fine 

siltstone
Clay-
stone

Carbon-
ate

Al-
bite

L1 2.250 0.544 47.604 32.289 19.192 0.371 Clayey siltstone Dolomite intercalation, 
convolute bedding, vertically 
oriented calcite fillingsL2 10.875 0.048 41.532 39.763 16.612 0.045 Clayey siltstone

L3 4.375 0.301 45.628 33.949 19.798 0.324 Clayey siltstone
L4 5.500 0.145 47.600 35.599 16.518 0.138 Clayey siltstone
L5 1.125 0.530 48.214 32.048 18.892 0.315 Clayey siltstone

L6 6.125 0.147 47.899 35.980 15.894 0.081 Clayey siltstone Dolomite lenses and horizontal 
laminations

L7 1.750 0.809 53.608 30.382 15.052 0.148 Fine siltstone Abundant albite nests on bed-
ding surfacesL8 9.250 0.072 44.942 37.823 17.089 0.073 Clayey siltstone

L9 5.875 0.079 43.774 38.021 18.021 0.104 Clayey siltstone Desiccation cracks, intraclasts, 
and convolutionsL10 6.705 0.341 43.597 33.103 22.488 0.471 Clayey siltstone

L11 1.500 0.045 44.656 38.405 16.849 0.046 Clayey siltstone
L12 1.750 0.062 47.020 37.349 15.504 0.064 Clayey siltstone Abundant albite nests on bed-

ding surfacesL13 1.000 0.326 53.564 31.943 14.041 0.126 Fine siltstone
L14 0.625 0.589 50.354 31.935 16.803 0.319 Fine siltstone Albite nests and aleurolit 

intraclastsL15 4.125 0.354 63.610 27.558 8.362 0.097 Fine siltstone
L16 2.000 0.920 64.843 23.764 10.409 0.065 Fine siltstone
L17 0.750 0.062 39.236 38.707 21.802 0.192 Clayey siltstone
L18 8.125 0.082 48.115 37.178 14.572 0.052 Clayey siltstone Albite nests & cracks
L19 1.250 0.123 48.644 36.141 15.017 0.076 Clayey siltstone
L20 1.750 0.497 48.266 31.281 19.537 0.419 Clayey siltstone Mainly structureless, bioturba-

tion and aleurolite intraclast 
can also be presentL21 1.250 0.239 49.636 33.639 16.030 0.160 Clayey siltstone

L22 1.125 0.439 48.782 32.246 18.215 0.318 Clayey siltstone
L23 0.625 0.277 51.159 33.376 15.081 0.107 Fine siltstone
L24 2.625 0.084 51.264 36.645 11.980 0.027 Fine siltstone
L25 4.000 0.345 48.948 32.976 17.488 0.241 Clayey siltstone
L26 8.000 0.077 51.888 35.668 12.321 0.046 Fine siltstone Crossbedding with parallel set 

boundaries, synsedimentary 
faults, abundant albite nestsL27 4.750 0.698 54.474 29.630 14.937 0.262 Fine siltstone

L28 1.875 0.074 56.732 33.832 9.344 0.018 Fine siltstone
L29 0.500 0.282 54.501 32.326 12.780 0.110 Fine siltstone

L30 8.625 0.068 50.614 36.917 12.370 0.030
Fine siltstone Crossbedding with parallel set 

boundaries, synsedimentary 
faults, abundant albite nests

L31 1.750 0.192 44.045 35.051 20.416 0.296 Clayey siltstone Calcite precipitations in the 
cracks

L32 9.250 0.061 44.399 38.710 16.755 0.076 Clayey siltstone

Table 2. The linear (Pearson) correlation coefficients for averaged HU data of rock-forming components. Between 
brackets, the p < 0.05 values indicate statistically significant non-zero correlations at the 95.0% confidence level.

 Detrital fragments Fine siltstone Claystone Carbonate Albite
Detrital fragments 1 0.519 (p=0.002) −0.878 (p=0) −0.012 (p=0.947) 0.501 (p=0.004)
Fine siltstone 1 −0.785 (p=0) −0.828 (p=0.303) −0.253 (p=0.163)
Claystone 1 0.303 (p=0.091) −0.352 (p=0.048)
Carbonate 1 0.705 (p=0)
Albite 1
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Table 3. Summary table of REV calculations. 

Layer 
no.

Thickness 
of the layer 

(cm)

Volume of 
the layer 

(cm3)

REV 
(cm3)

Normalized REV 
(in the percent of 
the layer volume)

Rock type Sedimentary structures

L1 2.25 22.48 1.3 5.78 Clayey siltstone
L2 10.88 108.64 4.7 4.33 Clayey siltstone
L3 4.38 43.71 2.1 4.80 Clayey siltstone
L4 5.50 54.95 2.1 3.82 Clayey siltstone
L5 1.13 11.24 3.0 26.69 Clayey siltstone

L6 6.13 61.19 10.7 17.49 Clayey siltstone Dolomite lenses and horizontal 
laminations

L7 1.75 17.48 1.1 6.29 Fine siltstone Abundant albite nests on bedding 
surfacesL8 9.25 92.41 2.8 3.03 Clayey siltstone

L9 5.88 58.69 11.2 19.08 Clayey siltstone
Desiccation cracks, intraclasts, and 
convolutionsL10 6.75 67.43 11.2 16.61 Clayey siltstone

L11 1.50 14.99 11.1 74.07 Clayey siltstone
L12 1.75 17.48 0.7 4.00 Clayey siltstone Abundant albite nests on bedding 

surfacesL13 1.00 9.99 1.3 13.01 Fine siltstone
L14 0.63 6.24 1.6 25.63 Fine siltstone

Albite nests and aleurolit intraclastsL15 4.13 41.21 10.7 25.97 Fine siltstone
L16 2.00 19.98 12.6 63.06 Fine siltstone
L17 0.75 7.49 2.2 29.36 Clayey siltstone
L18 8.13 81.17 13.1 16.14 Clayey siltstone Albite nests and cracks
L19 1.25 12.49 2.5 20.02 Clayey siltstone
L20 1.75 17.48 2.0 11.44 Clayey siltstone Mainly structureless, bioturbation 

and aleurolite intraclast can also be 
presentL21 1.25 12.49 2.6 20.82 Clayey siltstone

L22 1.13 11.24 2.0 17.80 Clayey siltstone
L23 0.63 6.24 1.4 22.42 Fine siltstone
L24 2.63 26.22 1.5 5.72 Fine siltstone
L25 4.00 39.96 2.2 5.51 Clayey siltstone
L26 8.00 79.92 11.8 14.76 Fine siltstone Crossbedding with parallel set 

boundaries, synsedimentary faults, 
with abundant albite nestsL27 4.75 47.45 9.5 20.02 Fine siltstone

L28 1.88 18.73 1.1 5.87 Fine siltstone
L29 0.50 5.00 1.1 21.93 Fine siltstone

L30 8.63 86.16 11.8 13.74
Fine siltstone Crossbedding with parallel set 

boundaries, synsedimentary faults, 
with abundant albite nests

L31 1.75 17.48 1.1 6.53 Clayey siltstone Calcite precipitations in the cracks
L32 9.25 92.41 2.7 2.94 Clayey siltstone

Table 4. Summary statistics of actual and simulated REV values of clayey-siltstone and fine siltstone layers.

Summary statistics
A B C D

REV (cm3) Normalized REV (%) Monte Carlo simulation of 
the REV (cm3) 1,000 runs

Monte Carlo simulation of the 
normalized REV (%) 1,000 runs

Clayey siltstone (N=20)
Avg. 4.57 15.51 5.86 19.88
STD 4.18 16.11 4.57 17.76
Min. 0.70 2.94 0.70 2.94
Max. 13.10 74.07 13.10 74.07

Fine siltstone (N=12)
Avg. 5.46 19.87 6.54 22.84
STD 5.20 15.49 5.14 15.84
Min. 1.10 5.72 1.10 5.72
Max. 12.60 63.06 12.60 63.06



168 Saja M. Abutaha et al.

ed that the average REV of the fine siltstone layers 
is larger than that of clayey siltstone layers. The for-
mer is 5.46 cm3, the latter 4.57 cm3 (Table 4, columns 
A and B).

Monte Carlo simulation with 1,000 runs was 
used to simulate the long-run properties of REV 
and the normalised REV for both lithologies. The 
results are summarised in Table 4 (columns C and 
D). In the studied core volume, the average REV of 
the CT density of clayey siltstone is slightly smaller 
(5.86 cm3) than that of fine siltstone (6.54 cm3). In 
the case of clayey siltstone, the normalised REV is 
19.88% of the studied subvolume (on the scale of 
the studied core volume) on average, while this val-
ue is 22.84% for fine siltstone.

6. Discussion

Spatial variations in CT densities (HU) can be used 
to identify small-scale textural and structural het-

erogeneities in rocks. According to our findings, 
the calculated REV of CT-densities (HU values) can 
be directly related to the high textural heterogene-
ity caused by the sedimentary structures. Figure 8 
shows four high-resolution CT images of convolute 
lamination (Fig. 8A), a mud intraclast (Fig. 8B), a 
crack (Fig. 8C) and a pair of cross laminae. The high 
and low-density components are very close to one 
another. The density contrast is high even within 
a short distance. In such situations, the series of 
the average CT densities of the increasing volumes 
show a monotonously increasing pattern until 
the volume does not cover the entire sedimentary 
structure. The normalised REV values are below 
10% whenever the corresponding layer does not 
show any sedimentary structure (Table 3).

Our study was based on the statistical analysis 
of vacuumed CT scans. Consequently, in the valida-
tion of results, the effect of vacuuming on the integ-
rity of core samples, specifically minerals (such as 
clay) that contain water as part of their crystal struc-

Fig. 8. Sedimentary features of the defined layers. A – Convolute lamination; B – Mud intraclast; C – Crack; D – 
Cross-lamination. Red dashed lines show the sedimentary structure out-borders and red arrows point out the actual 
deformation positions.
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ture, must be considered. Various illite and illite/
smectite-mixed assemblages constitute the domi-
nant clay minerals of the Boda Claystone Formation 
(Németh & Máthé, 2016). Clay minerals are present 
as part of rock fragments, “allogenic clays” or au-
thigenic clays (Abutaha et al., 2021). Partial to com-
plete albitisation of detrital plagioclase of the BCF 
yielded Ca2+ to react with HCO3- and Mg2+(+Fe2+) 
to produce carbonate cement (Table 2; the positive 
relationship between albite and carbonate is ~0.7).

Bush & Jenkins (1975) reported that the drying 
process of core samples in an unhumidified oven 
will remove not only the free pore water but also 
the layers of non-liquid water from the clay min-
erals. They pointed out that, because this water is 
an integral part of the clays in the reservoir, remov-
ing it during laboratory drying will increase the 
available pore space and cause erroneously high 
porosity measurements. Different clay minerals ex-
hibit different levels of sensitivity to drying, with 
smectite-type clays being the most sensitive and 
kaolinite the least (Keelan, 1982). The presence of 
smectite clay in narrow, slot-like flow channels, 
combined with its tendency to collapse when wa-
ter is removed, may also cause large permeability 
(Soeder, 1986). 

By comparing the highest and lowest ratios of 
the claystone rock-forming components layers in 
Table 1, we would obtain L9 and L16 layers. L9 has 
the highest claystone (38.02%) and smallest fine silt-
stone (43.77%) percentages, it includes desiccation 
crack and convolution, as deformation structures. 
In contrast, L16 shows the highest fine siltstone 
ratio (around 65%) and the lowest claystone per-
centage (23.76%) with a non-sedimentary struc-
ture realised. In layer L9, desiccation cracks are 
the dominant sedimentary structures. In this layer, 
the illite-smectite and smectite might be regarded 
as allogenic clay having been precipitated in mud 
cracks. Therefore, additive pore space resulting 
from clay shrinkage (during the drying process) 
might cause erroneously high porosity measure-
ments, resulting in higher REV. In contrast, the clay 
in L16, which might be allogenic or/and authigenic 
and even be collapsed during the drying process, 
would not influence the inherent pore space ratio 
because of its low percentage. Studying the po-
rosity distribution of the current BCF core sample, 
Abutaha et al. (2021) managed to confirm collapses 
of smectite/illite structures during the drying/sat-
uration process and postulated sedimentary struc-
tures, i.e., convolute structures, to act as significant 
porosity-improving factors.

In other words: the presence of structures (sed-
imentary structures or even cracks) within the BCF 

core sample is more commonly interpreted as a 
type of heterogeneity, regardless of how regular 
their distribution is. The concept of increased heter-
ogeneity could be viewed as a sharp density change 
in the CT number across a particular small section 
of a core (layer). Furthermore, internal void space 
in the layer’s sedimentary features could be the real 
reason behind the high HU density contrast and the 
REV elevation. However, the core sample drying 
(vacuumed) process should be realised as an essen-
tial factor for creating pores and yielding illusory 
higher porosity measurements (clay collapsed). 
Those additive theoretical pores are presumed to 
have occurred in all layers with sedimentary struc-
tures (mud-cracks, cross-bedding, convolution) and 
cracks. Since the clayey-silt layers (L15, L16) show 
the maximum siltstone ratios (>60%), minimum 
claystone proportion, and lack any sedimentary 
features, the high inherent porosity is expected to 
be accurate. The large REV defined can thus certain-
ly be related to an actual pore heterogeneity. 

7. Conclusions

CT scanning is a powerful imaging technique for 
studying and analysing specimens in 3D without 
destroying them. CT numbers can also be used to 
proxy bulk density and identify sediment changes 
within a core sample. The present study aimed to 
quantify and evaluate the minimum volume of a 
Boda Claystone Formation core sample that could 
capture a representative quantity of physical heter-
ogeneity (i.e., density) using the ARIMA SPC tech-
nique.

Stacked slices of CT volumes were grouped into 
relatively thin consecutive layers; thirty-two layers 
were defined. After averaging the compositional 
data by layers, the dominant rock-forming compo-
nent provided the rock type name, i.e., fine siltstone 
layer (>50% siltstone component). Linear correla-
tion coefficients between the averaged rock-form-
ing components pairs were also studied across the 
set of layers.

The REV for the chosen layers was performed 
by computing multiple incremental HU volumes in 
each layer. The average CT densities of the increas-
ing volumes showed a monotonously increasing 
pattern until the volume did not cover the entire 
sedimentary structure. The concept of increased 
heterogeneity, therefore, could be viewed as a sharp 
density change in the CT number (HU) across a par-
ticular small section of a core (layer). That is, the 
REV of CT densities can be directly related to the 
high textural heterogeneity caused by sedimentary 
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structures, i.e., the largest REV values correspond-
ed to the presence of sedimentary structure (e.g., L9 
and L11), or such large REVs could be related to the 
largest (> 60%) siltstone constituent.

In general, the average REV of the fine siltstone 
layers was larger than that of clayey siltstone layers: 
5.46 cm3 and 4.57 cm3, respectively. By normalising 
the REV values with the corresponding layer vol-
umes, they could be expressed as volume percent-
age of the studied subvolume (layer). 

The Monte Carlo simulation was used to simu-
late the long-run properties of REV and the normal-
ised REV. As a result, the simulated REV (average) 
of the CT density of clayey siltstone was slightly 
smaller (5.86 cm3) than that of fine siltstone (6.54 
cm3). Simulated percentages of the normalised REV 
values in clayey siltstone were 19.88% on average of 
the studied subvolume (on the scale of the studied 
core volume) and 22.84% for fine siltstone.

The presence of structures (sedimentary struc-
tures or cracks) within the BCF core sample is more 
commonly interpreted as a type of heterogeneity; 
the higher the heterogeneity, the higher REV. Seem-
ingly, internal void space in the layers’ sedimenta-
ry features might be the real reason for developing 
the high HU density contrast (increasing REV). We 
believe that the drying process of the core sample 
could essentially affect the available pore space and 
cause erroneous higher-porosity measurements (by 
collapsing clay), especially at sedimentary struc-
tures and cracks, where authigenic clay is expected 
to occur primarily.
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