
1. Introduction

In the field of science, if formerly accepted interpre-
tations are too easily endorsed and not thoroughly 
reviewed, especially if these have been built on old-
er and not updated information or knowledge, this 
may have hampered which research questions have 
been investigated and consequently what has been 
documented. Lithified mixtures of non-weathered 
sediments of various grain sizes, displaying clasts 

and rock fragments of different shapes and sizes 
embedded in a matrix of clay, which originated 
from, for example, mass flow or glaciation, are la-
belled with the non-genetic term diamictite. Pebbly 
sandstone, matrix-supported conglomerates, brec-
cias and weathered bedrock displaying core stones 
or less weathered rock fragments in a matrix, are 
(commonly) not labelled diamictites. The origin of 
diamictites and other geological features that are 
produced from erosion and deposition, which have 
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been interpreted to be from pre-Pleistocene glacia-
tions, is the scope of the current article.

For the present review, which is concerned only 
with geological features interpreted to be evidence 
of cold climates (not climates per se) throughout 
pre-Pleistocene Earth history, the starting point is 
the year 1855 when Ramsay interpreted some Per-
mian boulder deposits in England to be of glacial 
origin (Hoffman, 2011). Ever since that publication 
there has been controversy over the interpretation 
of diamictites. The Gondwana Late Palaeozoic 
Ice Age, probably best represented by the Dwyka 
Group in South Africa, was first interpreted to be 
from an ancient glaciation in 1870, and this inter-
pretation was generally accepted in 1898 (Sandberg, 
1928; Hancox & Götz, 2014; Molén & Smit, 2022). 
In 1891, Reusch described a striated pavement be-
low a diamictite, which was interpreted to be from 
a Neoproterozoic glaciation, in the Varanger Fjord 
area (northern Norway), which has since then been 
a very popular excursion locality (Bjørlykke, 1967; 
Molén, 2017). In 1908, Coleman interpreted diam-
ictites in the Palaeoproterozoic Gowganda For-
mation as evidence of glaciation (Coleman, 1908; 
Molén 2021). These influential early papers were 
published before detailed documentations from 
studies of sediment gravity flows (SGFs) became 
well known amongst geologists, and these early 
interpretations have prevailed and often direct-
ed later interpretations and research questions of 
diamictites worldwide. Papers describing deposits 
interpreted to have been produced by former gla-
ciations have been published for thousands of sites, 
from all geological periods (e.g., five episods in the 
Cretaceous), in the Precambrian interpreted to have 
covered probably the complete Earth one or many 
times (Snowball Earth or Slushball Earth), includ-
ing major glaciations during the Hirnantian (Late 
Ordovician) and the Late Palaeozoic (Hambrey & 
Harland, 1981a; Deynoux, 1985a; Deynoux et al., 
1994; Molén, 2023a).

The birth of sediment gravity flow (SGF) re-
search can be said to have been in the year 1827, 
with the introduction of the term flysch (Studer, 
1827). The first mention of a submarine fan dates 
from 1955 (Menard, 1955), and the first mention of 
a turbidite-fan link in ancient fans was from 1962 
(Bouma, 1962; Shanmugam, 2016). Former inter-
pretations of diamictites as glaciogenic, without 
taking into account the more recent understanding 
of the importance of SGFs in the geological record 
(Shanmugam, 2016, 2020, 2021), have often resulted 
in underestimation of SGFs in favour of glaciation, 
even if SGF deposits have often been document-
ed in papers concerning diamictites. As the un-

derstanding of the geological work resulting from 
gravity flows is a recently growing research area 
(e.g., Ogata et al., 2019), more diamictites and co-oc-
curring geological features have been interpreted 
as non-glacial. As a consequence of the general lack 
of sufficient knowledge of this research area, Shan-
mugam (2016) was invited to write a review con-
cerning deposition by gravity flows in fan environ-
ments. This paper was a reaction generated because 
another major paper concerning global geological 
studies had missed 60 years of research on the im-
portance of deposition in submarine fans. Lately, 
hyperpycnal flows, i.e., highly dynamic dense and 
often long-lived (up to months) subaqueous under-
flows orginating from land-derived gravity flows 
(including from sediments transported by rivers), 
have been recognised to be far-transporting agents 
of sediments and organic matter. These flows may 
transform, after deposition, into a full spectrum of 
SGF deposits, including cohesive debris flows and 
rhythmites, which adds one more dimension to this 
research area (Zavala & Arcuri, 2016; Shanmugam, 
2021; Zavala, 2019, 2020).

The transformation in the geological communi-
ty to a reinterpretation of the origin of diamictites, 
started in the early 1970s, but could be said to have 
begun with an earlier paper by Crowell (1957). 
Out of this came recognition that many “ice-age 
remains” had been deposited by different kinds of 
SGFs, for example by turbidity currents, but more 
commonly by cohesive debris flows. For example, 
in the Cenozoic of Alaska, twelve major glacia-
tions were reinterpreted as having formed largely 
by SGFs (Plafker et al., 1977; Eyles & Eyles, 1989). 
Schermerhorn documented similar reinterpreta-
tions shown in his classic work on Late Precambri-
an diamictites (Schermerhorn, 1974, 1977). Many 
researchers in addition to Schermerhorn have com-
pared tills, glaciomarine sediments and different 
kinds of SGFs, but the work may have been ham-
pered by the assumption that outcrops with equivo-
cal origin are ice-age deposits (Hambrey & Harland, 
1981b; Boulton & Deynoux, 1981; Anderson, 1983; 
Wright et al., 1983; Eyles, 1993). The documentation 
in Schermerhorn´s classic paper (1974), of criteria 
showing differences between the appearance of fea-
tures from SGFs and glaciation, has to a large part 
gone unnoticed, even though this article may have 
been referred to in passing by many geologists (e.g., 
mentioned by Le Heron et al., 2017).

By using multiple working hypotheses, the cur-
rent analytical review documents detailed descrip-
tions of geological features from pre-Pleistocene de-
posits and compares these to Quaternary geological 
features. However, this analytical review does not 
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start with models or former interpretations. Litera-
ture from relevant areas of physical geography and 
glacial geology, including mass wasting processes 
and tectonics, has been reviewed. Field work com-
bined with literature studies have been applied to 
reports of pre-Pleistocene sections where the geo-
logical features had been interpreted to be glacio-
genic. It is evident that Quaternary erosional and 
depositional landforms are often dissimilar to those 
which are interpreted from the pre-Pleistocene 
when studied in detail, even if there are similari-
ties in the more general appearances. Quaternary 
landforms are commonly described in great detail 
and have on occasions even been observed during 
formation. The same holds true for sediment grav-
ity flows (SGFs) and other mass movements (e.g., 
Shanmugam, 2016, 2021; Ogata et al., 2019; Peakall 
et al., 2020; Rodrigues et al., 2020; Dufresne et al., 
2021; Kennedy & Eyles, 2021).

Interpretations of the origin of diamictites and 
co-occurring geological features may vary widely 
even though an origin by mass flow or glaciation 
constitutes the most common interpretations (e.g., 
Dufresne et al., 2021; Isbell et al., 2021). However, 
as knowledge about geological processes has ex-
panded, it has become more apparent which inter-
pretation - glaciogenic or mass flow - the origin of 
an ancient formation is better justified. Research on 
diamictites and their surrounding geological fea-
tures needs to be reconciled with recent scientific 
progress in many different research disciplines of, 
e.g., sedimentology, physical geography and geo-
chemistry. In particular, research progress on Qua-
ternary glaciations and sediment gravity flows has 
revealed both similarities and differences, the most 
important of which are easily documented in the 
field.

Thousands of papers have been published on 
diamictites and pre-Pleistocene climates, and a 
subsample of the most detailed of these are sum-
marised or cited below. Older papers may contain 
details about geological features which are relevant 
to the interpretation of an outcrop, but such details 
may not always be documented in more recent pa-
pers which have accepted former interpretations. 
The classic 150-page paper by Schermerhorn (1974) 
provided inspiration for the present work when it 
was suggested that everything maybe did not ap-
pear to be what it was supposed to be. Results of 
the process-related studies by Shanmugam (2012, 
2021) are also informative as are other papers like 
Peakall et al. (2020), who documented the origin 
of soft sediment striated and grooved surfaces/
pavements and the transport of large clasts by 
SGFs. Furthermore, papers describing how mass 

movements have changed from e.g., slides, to de-
bris flows and finally to turbidity currents (Ogata 
et al., 2019; Rodrigues et al., 2020; Kennedy & Eyles, 
2021), have helped in the interpretation of ancient 
deposits. The work by the present author (Molén, 
2017, 2021; Molén & Smit, 2022) has benefitted from 
the combination of studies from different research 
areas used in a paper by Kennedy and Eyles (2021). 
A summary of process-related research is similar 
to the Lyellian statement that, “The present is the 
key to the past”, i.e., to study recent geological fea-
tures with known origins, assumes that the natu-
ral laws have not changed over time (even though 
not all processes can be mathematically described), 
and applies documented observations to ancient 
deposits. However, classic uniformitarianism is sci-
entifically dead (Romano, 2015), i.e., processes may 
not have operated with the same “momentum” all 
throughout Earth history, and different kinds of 
sediments have different preservational potential.

Whether or not an area should be interpreted to 
have formed by glaciation, is a matter for the field 
geologist to determine. Accepted interpretations of 
an ancient outcrop or area, while describing the ap-
pearance of the geological features from that area as 
evidence of similar interpretations of other ancient 
deposits, may lead to mistakes. Old interpretations 
and paradigms may not always be correct, and re-
cent progress in sedimentology and glaciogenic 
processes needs to be acknowledged.

The geological features discussed below are 
those which most commonly are interpreted to be 
from glaciation. The different features are first de-
scribed in a more general context, and then details 
are provided which makes it possible to interpret 
the origin of these features more conclusively from 
either glaciation or some other processes, the latter 
mainly SGFs.

2. Geographical extent, thickness of 
deposits and tectonics

It has recently been acknowledged that the main 
depositional areas of sediments today are subma-
rine fans and mass transport in areas of subsiding 
basins (Shanmugam, 2016). Even on land the most 
important process of moving material is mass wast-
ing (Shanmugam, 2020), while other processes may 
be dominant in confined areas (i.e., areally and/or 
environmentally restricted) and/or during short-
er time intervals. Quaternary tills are commonly 
thin (2–15 m, more often on the lower end), except 
in confined areas with general thicker tills (e.g., 
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10–52 m in a 300-km-long band at the southern bor-
der of the North American inland ice sheet; Molén, 
2023a), and therefore their preservation potential 
for deep time would be low. These observations in-
dicate that, whatever the climate was during Earth 
history, there would be few preserved features orig-
inating from earlier glaciations on former higher, 
stable bedrock. That especially concerns subglacial 
sediments, as most material would have been trans-
ported into marine settings and subsiding basins. In 
the Neoproterozoic, diamictites are commonly pre-
served in thick sequences in tectonically unstable 
subsiding basins at the edges of cratons, and would 
therefore not easily qualify as subglacial sediments 
in situ (Eyles, 1993). Furthermore, geological fea-
tures from the Late Paleozoic Ice Age and the Hir-
nantian (Ordovician) glaciation, in most places, are 
preserved in areas of subsiding basins and/or areas 
affected by transgressions (Ghienne, 2003; Buatois et 
al., 2010; López-Gamundí, 2010; Schatz et al., 2011; 
Molén & Smit, 2022; Molén, 2023a). The progress in 
knowledge of SGFs has changed interpretations of 
most ancient diamictites which had formerly been 
interpreted to be commonly primarily subglacial, 
to instead be (to a large part) reworked SGFs, es-
pecially cohesive debris flows. This reinterpretation 
is absolutely not controversial. A provisional older 
estimate is that 95 per cent of pre-Pleistocene “gla-
ciogenic” diamictites have now been reinterpreted 
to be SGF deposits (Eyles 1993), even though a gla-
cial marine interpretation displaying SGFs is not 
excluded.

3. Diamict structure

At first glance, diamictites formed by cohesive SGFs 
and till deposited by glaciers, may be difficult to 
distinguish (e.g., Lowe, 1982; Visser, 1983; Wright 
et al., 1983), and there have been many mistakes 
of interpretation (e.g., Dufresne et al., 2021; Molén, 
2023a). Cohesive debris flow deposits may contain 
all particle sizes, including a large fraction of clay, 
similar to tills (e.g., Molén & Smit, 2022), and there-
fore these may be difficult to distinguish by particle 
size analyses, contrary to other sediments which are 
more easily separated, e.g., outwash, sheet flow and 
loess (Blott & Pye, 2012). In many cases, however, it 
is possible to document other patterns/properties 
of diamictites that are more characteristic of either 
SGFs or tills.

Diamictites which commonly have been inter-
preted to be tillites, even to this day, often display 
grading, bedding and amalgamation, similar to 
SGF deposits (Visser, 1983; Domack & Hoffman, 

2011; Kennedy & Eyles, 2021; López-Gamundí et al., 
2021; Shanmugam, 2021; Molén & Smit, 2022). They 
are often covered by laminated deposits and/or 
sediments with marine fossils (Sterren et al., 2021). 
Occasionally, there is even a gradational transition 
from the diamictite into the overlying (sorted) bed 
(Cuneo et al., 1993; Isbell, 2010), but there may be 
long time periods in between the deposition of 
diamictites and the subsequent (sorted) beds.

Glaciers process all kinds of sediments and bed-
rock, slowly turning these into rock flour, and do 
not sort out the finer material (albeit, of course, 
with the exception of sediments from small alpine 
glaciers which are processed during a very short 
time, and produce deposits which would be more 
vulnerable to erosion and would be difficult to 
document in the rock record). In pre-Pleistocene 
diamictites which are interpreted to be glaciogen-
ic and displaying outcrops over large areas, there 
is often no rock flour, contrary to Quaternary tills 
(Frakes 1979; Le Heron et al., 2005, 2006; Yassin & 
Abdullatif, 2017; Molén 2017; Chen et al., 2021). Soft 
sediment clasts may be common (Deynoux, 1985b; 
Molén, 2017; Kennedy & Eyles, 2019, 2021), and 
sometimes clasts in diamictites have been pressed 
into underlying surfaces (Isbell et al., 2021), or the 
overlying sediment has been pressed down into the 
diamictite, or the diamictite has been pressed up-
wards into the overlying sediments (Cuneo et al., 
1993; Isbell, 2010), i.e., features which frequently ac-
company SGF deposits (Shanmugam, 2012; Molén, 
2017, 2023a; Vesely et al., 2018; Kennedy & Eyles, 
2019, 2021; Rodrigues et al., 2020; Kraft & Vesely, 
2023).

4. Fabrics

Fabrics in subglacial tills are less varied and azi-
muth constrained than those in SGF deposits. While 
glaciogenic fabrics may often be unimodal or bi-
modal, with a common updip of 10 to 20° in the di-
rection of the ice movement (e.g., Evans et al., 2016), 
this can also be displayed by gravity flow deposits 
(including in flow tills). In gravity flow deposits the 
fabric also may be planar or steeper than in tills, but 
the main difference is that it commonly differs in 
vertical section (Lindsay, 1968).

5. Erratics

There has never been a systematic study of differ-
ences in size of clasts in tills and SGF deposits, even 
though clast size is often mentioned. In tills there 
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are almost always numerous large clasts, many me-
tre-sized (Fig. 1A). In mass movements clasts also 
may be large, and kilometre-sized blocks are not 
uncommon in slides (Nwoko et al., 2020a, 2020b; 
Puga Bernabéu et al., 2020; Kennedy & Eyles, 2021; 
Kumar et al., 2021). If clasts in SGFs are large, it is 
commonly easy to see evidence of soft sediment 
structures originating from the movement.

Calculations show how much cohesive strength 
is needed to transport large clasts in a mud-rich flu-
id, which could be a cohesive debris flow (Peakall 
et al., 2020). The increase in buoyancy needed for 
clast size is exponential, and clasts larger than 1 
m in diameter would need so much yield/matrix 
strength that it would be suspected that such trans-
port would be rare (Peakall et al., 2020). Thus, if 
>1m clasts are transported, one would suspect to 
see clear evidence of the flow mechanism, i.e., any 
kind of disturbances in the sediments. This size 
pattern is exactly displayed in diamictites which 
have been interpreted to be glaciogenic: the largest 
clasts are seldom more than 1 m in diameter, even 
though clasts in SGF and other deposits from the 
same area may include much larger sizes than those 
parts which are considered to be subglacial (Molén, 
2023a). In conclusion, the presence of large clasts is 

almost always much rarer in pre-Pleistocene diam-
ictites than more recent glaciogenic sediments, and 
they are smaller than in tills.

In many diamictites there appears to be a mix 
of different clast types and no/few intermediate 
clasts, e.g., rounded, long-transported clasts and 
highly irregular and sharp short-transported clasts 
together (Molén, 2021; Molén & Smit, 2022). This is 
easily explained by mixing of material from differ-
ent sources, like in SGFs which have mixed material 
transported for distances of 2,000 km and depositing 
material over areas of 132,000 km2 (Molén, 2023a), 
but is not implausible for tills, even though glaciers 
commonly quickly abrade sharp edges (Eyles & Ey-
les, 2000; Ortiz-Karpf et al., 2017; Ogata et al., 2019; 
Nugraha et al., 2020; Rodrigues et al., 2020).

In some diamictites there is a correlation be-
tween bed thickness and the diameter of the errat-
ics (Schermerhorn, 1974; Martin et al., 1985; Eyles & 
Januszczak, 2007). In quite a few diamictites, clasts 
or bedrock are fractured into a jigsaw puzzle texture 
(Fig. 1B); this is common in mass wasting deposits 
but has never been recorded from Quaternary tills 
(Ui, 1989; Thompson, 2009; Ali et al., 2018; Dufresne 
et al., 2018, 2021; Molén, 2021). There are, of course, 
fractured rocks in tills, but these do not display a 
jigsaw puzzle texture.

Boulder pavements (i.e., flat-topped accumula-
tions of large clasts or boulders) are produced by 
glaciers in a process almost like a slow gravity flow 
(Clark, 1991; Hicock, 1991), and therefore there may 
be similarities to boulder accumulations formed by 
SGFs, e.g., planed-off boulders displaying striations 
as if processed by glaciers (e.g., Scott, 1988). If the 
boulders are more sorted, like a train (Bussert, 2014; 
Kennedy & Eyles, 2019), this may be more consist-
ent with SGFs.

6. Polished, facetted and striated clasts

Clasts can be striated in many different environ-
ments. The variety of striations, and the number 
of striated clasts, may be similar in SGF deposits 
and tills (Atkins, 2003, 2004; Molén, 2023a). Often 
there is no detailed systematic documentation of 
any pattern in the appearance of striations, neither 
by researchers working with mass wasted deposits 
or those working with diamictites which have been 
interpreted to be tillites. However, Kennedy & Ey-
les (2021) documented that there were more striat-
ed clasts in SGFs in places where more clasts were 
present.

Detailed documentation of different combina-
tions of processes which produce clast form is also 

Fig. 1. A – Example of the common size of a Pleistocene 
erratic. Västerbotten County, Sweden; B – Jigsaw 
puzzle texture, where fine-grained sediment has been 
pushed in between the fractured clasts. Gowganda 
Formation, Canada (Molén, 2021). Marker is 20 cm.
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often inconclusive, and it may be possible that the 
only exclusive glaciogenic form is clasts that dis-
play double stoss-lee forms (Sharp, 1982; Krüger, 
1984; Rowe & Backeberg, 2011).

7. Striated, grooved and polished 
surfaces/pavements

Surfaces may become striated and grooved by dif-
ferent kinds of movements, such as glaciation, mass 
wastage and tectonism, and it is not always easy to 
determine the origin of a striated surface.

Clasts which are transported within glacier 
ice are always moving slightly, vertically up and 
down, and laterally from side to side, more or less 
depending on the temperature of the ice, which is 
also evidenced by the appearance of Pleistocene 
and more recent glaciogenic striations and grooves 
(Chamberlin, 1888; Sugden & John, 1982; Iverson, 
1991) (examples in Fig. 2). It is less well known that 

clasts within SGFs may be stuck in the same po-
sition for very long distances, almost like a small 
plough moving over the subsurface (Peakall et 
al., 2020), e.g., Figure 2A. In SGFs striations and 
grooves may also change direction and display an 
appearance similar to glaciogenic pavements (Enos, 
1969; Kneller et al., 1991; Pickering et al., 1992; But-
ler & Tavarnelli, 2006; Draganits et al., 2008; Peakall 
et al., 2020).

Outcrops of pre-Pleistocene striated areas com-
monly display regularly parallel, straight striations 
and grooves, both in soft sediments and in sedi-
mentary and igneous/metamorphic bedrock (Fig. 
3). They are commonly dispersed and cover more 
restricted areas. Surfaces are often not covered by 
diamictite, which may indicate bypass zones as 
in SGFs. The striated surfaces are often vertically 
stacked, and may display many unique features 
that are not produced beneath glaciers (examples in 
Table 1).

One main difference between pre-Pleistocene 
pavements and Quaternary glacial pavements is the 

Fig. 2. A – Clast in situ in a SGF-deposit showing long parallel striations, similar to those in many pre-Pleistocene pave-
ments and different from Quaternary striations and grooves. Compare with Figure 3. (Picture from: Enos, 1969. 
Used with permission from Journal of Sedimentary Research); B–D – Examples of Pleistocene striations on gneissic 
metamorphic bedrock, in the city of Umeå, Västerbotten County, Sweden. Note that the striations are semi-parallel, 
waxing and waning, commonly short and turning (especially on steep surfaces); D – This is an appearance of stri-
ations that has been well documented from Quaternary glaciers. Even if there are variations in the appearance of 
the striations, they are different from all documented pre-Pleistocene striations that the present author is aware of.
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presence of soft sediment surfaces. Soft sediment 
striated and grooved surfaces are commonly very 
regular, recorded from SGFs soon after formation in 
soft sediments (Peakall et al., 2020), and they are not 

present with similar appearance in any Pleistocene 
or younger subglacial environment, except possibly 
very locally. Soft sediment striated or grooved sur-
faces may often be interpreted to be glaciogenic if 

Fig. 3. Straight and parallel striations and grooves on pre-Pleistocene pavements, Dwyka Group, South Africa, com-
monly interpreted to be evidence from the Late Paleozoic Ice Age. A – Pavement on Precambrian Ghaap Formation 
Dolomite, close to Douglas, where striations are long and unbroken (photograph and pers. comm., Johan N.J. Viss-
er); B – Pavement in Neoarchean Ventersdorp andesitic/basaltic lava, at Douglas, with similar appearance as the 
striations and grooves in the pavement in the Precambrian Ghaap Formation Dolomite (scale is 30 cm, pavement 
has been recently weathered); C – Striations leap over a small scarp (apparently formed by sheet jointing; Molén & 
Smit, 2022) between the Ventersdorp andesitic/basaltic lava and Dwyka Group diamictite, at the famous Nooitge-
dacht pavement. There are striations in different directions, but commonly in regular groups and not displaying the 
common curvilinearity of Quaternary striations (Molén & Smit, 2022). (Photograph J. Johan Smit).

Fig. 4. Examples of multiple stacked surfaces displaying striations and grooves produced from turbidities, negative 
view. These are reminiscent both in detail and in overview of striations or grooves in stacked soft sediment pave-
ments that often are interpreted to be linked to pre-Pleistocene glaciations, but then the positive, rather than the neg-
ative, side is visible. Pictures are at c. 100 m distance from each other. Arrow is 25 cm. This outcrop was described in 
detail by Bischoff (2002) and in general by Hoffman (2016). Lower Saxony, Germany, Lower Carboniferus (Visean).
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they are recorded in positive relief, but similar ap-
pearing surfaces are commonly from SGFs if they 
are negative (Fig. 4) (compare Molén, 2023a, Sup-
plementary Material Table S2; Peakall et al, 2020; 
Baas et al., 2021).

Below SGF diamictites there are often traction 
carpets, i.e., thin beds of granular sediment be-
tween the diamictite and the underlying sediment 
or bedrock (Georgiopoulou et al., 2010; Talling et 
al., 2012; Dakin et al., 2013; Cardona et al., 2020; 
Peakall et al., 2020; Molén & Smit, 2022). Similar 
sediments may also be present beneath supposed 
tillites but are seldom documented in publications 
(Molén & Smit, 2022; Molén, 2023a). Soft sediment 
may also be moulded into strings displaying stria-
tions or grooves, by SGFs on top of hard surfaces, 
and the latter may become striated by the same pro-
cess (Molén & Smit, 2022).

There are pre-Pleistocene soft sediment grooves 
and striations which have been interpreted to 
have been formed by iceberg keels (Vesely & As-
sine, 2014), but these surfaces display no definite 
evidence of waves, currents or tides, even if there 
may be occasional changes of direction even up to 
180° for some features (Isbell et al., 2023). However, 
changes in directions up to 180° are also displayed 

by SGFs (Kneller et al., 1991). Surfaces interpreted 
to have been formed by pre-Pleistocene icebergs 
are rare, areally restricted, and often only isolated 
examples from single “icebergs”, contrary to areas 
of Quaternary ice-keel marks (Woodworth-Lynas 
& Guigné, 1990; Bennett & Bullard, 1991; Wood-
worth-Lynas, 1992; Woodworth-Lynas & Dowde-
swell, 1994; Dowdeswell & Hogan, 2016).

8. Are outsized clasts dropstones?

Outsized clasts are defined as clasts evidently larger 
than the particle size in the surrounding sediments. 
Outsized clasts which are present in fine-grained 
sediments in pre-Pleistocene formations, in either 
stratified or unstratified sections, often are labelled 
dropstones and interpreted to stem from input from 
icebergs or lake or sea ice (Bronikowska et al., 2021; 
Molén 2021). This is evident from a large number of 
papers on the subject, in which outsized clasts are 
described as dropstones and advanced as evidence 
for a glaciogenic interpretation of a formation (Le 
Heron et al., 2022b; Molén, 2023a), or not glaciogen-
ic if there are, e.g., no outsized clasts (Clapham & 
Corsetti, 2005). Systematic descriptions of outsized 

Table 1. Appearances of pre-Pleistocene “glaciogenic” striated surfaces/pavements, which are commonly generated by 
SGFs and tectonics, and are commonly not (or never) displayed by Quaternary glaciogenic pavements. Left-hand 
column: Examples of features of pavements which have been interpreted to be glaciogenic, but display unique 
appearances that have seldom or never been observed to have been produced by glaciers. Right-hand column: Pres-
ence of features produced by SGFs or tectonic movements, in comparison to formation by glaciers, approximate: 
1 = may possibly and occasionally, more or less by chance, be produced by glaciers, but may be rare or commonly 
present on surfaces produced by SGFs or tectonics. 2 = never or almost never produced by glaciers but may be 
present or are common on surfaces produced by SGFs or tectonics (for field data and references, references is made 
to Molén & Smit, 2022; Molén, 2023a).

Straight, regular, striations and grooves 2
Perfectly parallel striations and grooves 2
Soft sediment surfaces 2
Pavements commonly without diamictite 1
Striations continue from top of “tillite” into striations on pavement below 2
Superposed/stacked striated soft sediment surfaces 2
Striated or “fluted” sediment internally in diamictite 2
Sediment between pavement and diamictite, i.e., traction carpet 2
A soft sediment striated surface is cut into ripple laminated siltstone 2
Fossil plants jammed in between “tillite” and the striated pavement 2
A soft sediment pavement is draped with mudrock displaying crustacean track ways 1
Slickensides turn into striations, tectonic and “glacial” striations on same surface 2
Sand flows cover striations 2
Striations pass from lava to soft sediment stacked striations 2
Striations in same direction as foliation in underlying bedrock 1
Overhanging walls in striations 2
Molded sediment turns into striations 2
Bifurcating striations 2
Push up rinds at striations 1
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clasts, formerly interpreted to be dropstones, are 
the studies by Kennedy & Eyles (2021) and Molén 
(2021). Researchers may document different dis-
turbances in sediments close to outsized clasts, and 
label these disturbances after similar structures 
described in the much-quoted paper by Thomas & 
Connell (1985) describing Pleistocene dropstones, 
e.g., rucking structures (Fig. 5). Yet, such compar-
isons are seldom mentioned or fully documented.

However, clasts up to sizes of metres in diam-
eter can be lifted and transported by agents other 
than ice, i.e., vegetation and macro algae, and clasts 
transported with such agents may display the same 
appearance and thus be impossible to discriminate 
from clasts transported by glaciers, icebergs and sea 
ice. Even at this moment an estimated hundreds of 
thousands of clasts, most small but up to metres in 
diameter, are lifted and transported with kelp (Wa-
ters & Craw, 2017). Marine macro algae which can 
transport clasts of up to a few centimetres in diame-
ter, have been present from the Neoproterozoic and 
possibly even earlier (Bengtson et al., 2017; Gibson 
et al., 2018; Del Cortona et al., 2020). Therefore, the 
appearance of sedimentary structures next to out-
sized clasts (as documented by Thomas & Connell, 
1985) are always problematic for discrimination be-
tween transport by vegetation or ice.

Outsized clast are almost always transported 
with SGFs, larger clasts in denser, more cohesive 
and stronger flows. If clasts are transported with-
in more cohesive and denser parts of gravity flows, 
the resulting deposit will be a (non-glacial) diamic-

tite. Otherwise, it may be a laminated deposit where 
clasts may penetrate and disturb laminae in a simi-
lar way as dropstones. Therefore, the appearance of 
outsized clasts has to be documented in more detail 
in order to determine their origin.

Outsized clasts in rhythmites or other fine-
grained sediments which have been transported 
by SGFs are commonly smaller than glaciogenic 
dropstones, they are commonly smaller than clasts 
in nearby diamictites which are interpreted to be 
tillites, and they are also smaller than clasts in more 
clearly evident SGF deposits, i.e., deposits which 
are not massive but display much evidence of 
movement and therefore do not display freezing of 
the movement as is common in cohesive debris flow 
deposits. Many inferred dropstones are so small 
(<1 cm) that they would hardly make an impact on 
the bottom sediment (Bronikowska et al., 2021; Le 
Heron et al., 2022b; Molén, 2021), while such small 
clasts would commonly impact sediments trans-
ported with SGFs only because of flowage or later 
compaction (Molén, 2023a).

Non-glaciogenic outsized clasts may display a 
fabric similar to SGFs, they may be sorted where 
there is a correlation between clast size and sedi-
ment thickness, they are often draped with sedi-
ment, but they more seldom clearly penetrate lami-
nae (Molén, 2021, 2023a). The beds or laminae where 
the clasts are present often display a thickening next 
to the clast, and occasionally there may be a pushed-
up sediment bulge in front of the clast. The latter 
may often be labelled a rucking structure if the de-

Fig. 5. Left: Schematic definition of sedimentary structures next to dropstones. 1–4 are bottom contact, 5–7 are top 
contact. 1 = bending. 2 = penetration. 3 = rucking. 4 = rupture. 5 = bending. 6 = on-lap. 7 = rupture (after Thomas & 
Connell, 1985). Right: Photograph of an outsized clast commonly interpreted as a dropstone, Gowganda Formation 
at Cobalt, Ontario, Canada (Molén, 2021). The appearances of the sedimentary structures next to this clast conform 
to the definitions of a “leftover”, i.e., a clast that has been transported with a SGF, as defined in the right-hand col-
umn of Table 2 (marker is 10 cm).
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posit is interpreted to be glaciogenic (Valdez Buso 
et al., 2021), i.e., a structure that develops when a 
dropstone penetrates laminae and pushes sediment 
to the sides of a clast. On closer inspection it may 
be possible to document if it is a push or current 
structure from lateral movement, or if it is a struc-
ture formed by vertical penetration from above. 
This may be deduced from the lateral length of the 
disturbance, the thickness of the disturbance, if lam-
inae are moved to different heights or splits/joins 
at the outsized clast, or if the disturbance is only on 
one side. If clasts are dropped in flowing water, or if 
there are SGFs at the bottom, or if clasts are stuck to 
a piece of ice and only sink slowly to the bottom, the 
appearance of the structures surrounding the clasts 
will display similarities to those in SGF deposits.

Table 2 lists differences between the structures 
labelled by Thomas & Connell (1985) from drop-
stones (Fig. 5) compared to pre-Pleistocene “drop-
stones,” and also special features only present in 
connection to diamictites (not counting those that 
have already been interpreted by researchers to be 
from SGFs, as they all fall in the same category). It 
is, of course, not possible to decide whether each 
single outsized clast is a dropstone or not, but the 
evidence from appearances of many outsized clasts 
present together in a bed or area will indicate the 
best interpretation of that area.

The most definite pattern of sedimentary fea-
tures indicating a non-glacial origin includes com-
parative clast size, correlation between sediment 
thickness and clast size, if there is little or no pen-
etration (i.e., the clasts are within a single lamina 
or group of laminae) and the length of deformation 
surrounding the clasts, i.e., a pattern which is much 
fulfilled in e.g., Late Paleozoic Ice Age outcrops in 
Australia that are commonly considered to be gla-
ciogenic (see figures in Eyles et al., 1997 and Field-
ing et al., 2023). There should also be a correlation 
between clast size and impact force, but such a cor-
relation has not been studied systematically in the 
field (Bronikowska et al., 2021).

A more neutral label for dropstones, except for 
outsized clasts, would be lonestones, which is a 
non-genetic label (Neuendorf et al., 2005).

9. Erosional structures, lineations, 
valleys, fjords and sculpted bedrock

Lineations formed by Pleistocene glaciers may cov-
er large areas, from glaciers moving over heights 
and down in valleys (Eyles et al., 2018; Bukhari 
et al., 2021), while those present in the pre-Pleis-
tocene are commonly few or only single and may 

Table 2. Sedimentary structures next to outsized clasts. The upper seven structures were mentioned and defined by 
Thomas & Connell (1985) from dropstones (see Figure 5), and the data below the line are from the documentation in 
the main text. The differences between documented (Quaternary) dropstones, compared to outsized clasts that are 
commonly interpreted to be dropstones in pre-Pleistocene deposits, are described in the right-hand column.

Documented structures of glacial dropstones Common appearance of pre-Pleistocene “glaciogenic drop-
stones”

Bending below Similar, but may be less; more often like draping all around 
the clasts

Penetration, laminae are disrupted, commonly 1/3 to 
2/3 of clast size

Possible, but commonly less penetration and more often only 
at sharp edges of clasts

Rucking below Present, but more often only one sided
Rupture below May be present if at front of a SGF in soft sediment
Bending above Similar, but may be less; more often like draping all around 

the clasts
On-lap above, laminae are disrupted Similar, but more often sediments thin out and are draped 

around the clast; there may be a bulge upwards too
Rupture above, laminae are disrupted May be present, but would be more common if a clast has 

been dropped
Dropstones come in all sizes Commonly small, only a few cm
Approximately similar clast size of dropstone as in till Smaller size than in “tillite” or accepted SGF deposits
No correlation between sediment thickness and clast 
size

May be correlation between sediment thickness and clast size

Deformation of sediment locally and probably quite 
similar on both sides of clast

Deformation of sediment more extensive, including push 
and current structures, and different on opposite sides

Penetration common Clast often within single beds
Fabric may be inclined or subvertical Fabric similar to SGF deposits



 Patterns, processes and models – an analytical review of current ambiguous interpretations of the evidence for... 149

be more bevelled or downcutting. Lineations in 
the Ordovician of Sahara, interpreted from satel-
lite imagery to be glaciogenic (Le Heron, 2018; Le 
Heron et al., 2022a), follow the structure of under-
lying and planed-off dipping sandstone beds (Fig. 
6). On closer inspection, the lineations are irregular, 
meaning that they may not be lineations but sur-
faces exposed to non-glaciogenic erosion (detailed 
Google Earth study of the area which is interpret-
ed to display lineations by Le Heron, 2018). Glacial 
lineations would be independent of the linearity 
of underlying sediments, and some lineations are 
probably produced from tectonics (Le Heron, 2016, 
2018). Sculptured areas, including pavements, have 
also been shown to have originated in dipping stra-
ta probably by tectonics and recent erosion, above 

a palaeolandscape with an equivocal origin (Van-
dyk et al., 2021; Le Heron et al., 2022a). Lineations 
in southern Africa interpreted to be from glaciation 
are shorter and wider than their Pleistocene “coun-
terpart” (Andrews et al., 2019).

SGFs and water currents have been shown to 
sculpture large areas, including positive landforms 
with an appearance of nunataks or drumlins, espe-
cially if there are catastrophic flooding events, but 
these commonly leave more bevelled landforms 
and downcutting lineations than glaciation (Burr et 
al., 2002; Plescia, 2003; Rodriguez et al., 2005; Ma-
jor et al., 2005; Moscardelli et al., 2006; Leask et al., 
2007; Gupta et al., 2007, 2017; Robinson et al., 2017; 
Ortiz-Karpf et al., 2017; Nwoko et al., 2020a, 2020b).

Glaciogenic (alpine) valleys are supposed to be 
commonly U-formed in shape, while fluvial or oth-
er valleys are supposed to be more often V-shaped. 
However, research on almost 900,000 transverse 
logs and shapes of different valleys have shown 
that this is a truth with modification, i.e., different 
shapes are possible in many environments (ex-
amples in van der Vegt et al., 2012; Coles, 2014; 
Gales et al., 2014; Ortiz-Karpf et al., 2017; Pehlivan, 
2019; Puga Bernabéu et al., 2020). Also, thousands 
of different canyons and other valleys are formed 
by processes that are non-glacial, including tecto-
nism and SGFs, in all kinds of bedrock, including 
hanging valleys (Shepard & Dill, 1966; Clapham & 
Corsetti, 2005; Mitchell, 2006; Lamb, 2008; Amblas 
et al., 2011; Normandeau et al., 2015), so there may 
be many different interpretations of pre-Pleistocene 
valleys that have been interpreted to be glaciogenic 
(Giddings et al., 2010; Macdonald et al., 2011; Coles, 
2014; Ortiz-Karpf et al., 2017; Bechstädt et al., 2018; 
Pauls et al., 2019; Isbell et al., 2021; Vandyk et al., 
2021). If valleys display an irregular (not polished/
abraded/sculptured) basal boundary geometry, 
they may be more compatible with SGFs and slides 
than glaciation, even though this is not always the 
interpretation made (Dakin et al., 2013; Sobiesiak et 
al., 2018; Soutter et al., 2018; Dufresne et al., 2021; 
Molén 2021).

Recent research at Namibian basins displays ar-
eas below diamictites where the basal unconformity 
may be undulating, highly irregular and heteroge-
neous, with areas of heavy sediment injections into 
fractured bedrock that are interpreted to be sub-
glacial (Le Heron et al., 2021b) and not only clastic 
dykes; the latter may be common subglacially (e.g., 
Sokołowski & Wysota, 2020). Sediment injections 
are regular features of SGFs, and together with the 
general appearance of the area, this may indicate an 
origin by SGFs and not glaciation (Dufresne et al., 
2021; Molén, 2021, 2023a; Molén & Smit, 2022).

Fig. 6. In the area which is interpreted to display glacial 
lineations in Chad, the underlying bedrock consists 
of superimposed dipping sandstone beds. Erosion-
al processes on roughly level areas may produce an 
appearance of lineations from these dipping beds, in-
dependent of the erosional process. The photograph 
shows one example of dipping sandstone beds from 
the area in question, but here displaying curved and 
not straight erosional surfaces. An intermittent creek is 
visible in the centre of the photograph. Other detailed 
photographs from the same area were published by 
Le Heron (2018, figs 3, 4) showing juxtaposition to the 
underlying dipping sandstones, including positive 
features labelled nunataks or drumlins by Le Heron 
(2018), with an appearance similar to those made by 
flooding, rather than deep erosion made by glaciers 
(photograph from Google Earth/Google Maps).
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The most interesting valleys from a glaciogenic 
point of view are fjords. These display a very char-
acteristic appearance, i.e., narrow, overdeepened 
and with a prominent transverse “sill” or ridge at 
the outlet into the sea (or lake) (Fig. 7). If a valley 
has no transverse ridge at the outlet, it is probably 
not a fjord, even if that may be the interpretation 
which is published (e.g., Dietrich et al., 2021). Over-
deepening of ancient valleys may be more difficult 
to document, because surrounding mountains may 
have eroded away, but if there is evidence of deep-
er areas where the surroundings are higher, it may 
provided evidence of a fjord. No valley has ever 
been documented in a pre-Pleistocene formation 
that displays the typical appearance of a fjord. But, 
fjords are very common in Pleistocene and more re-
cent glaciated areas, and it could be suspected that 
they should be similarly prominent in more ancient 
areas, as these landforms do not readily vanish.

Plucking, which is a typical glacial phenomenon, 
also may be induced by water currents and gravity 

flows (Dakin et al., 2013; Lamb et al., 2014; Hodgson 
et al., 2018), but these often display steep stoss sides 
and gentle lee sides in bedrock (Molén, 2023a), con-
trary to glaciogenic landforms (e.g., Krabbendam & 
Glasser, 2011). Tectonic forms may be moulded into 
sculpted glacial-apparent bedrock by fluvial action, 
including shapes reminiscent of roches moutonnées 
(Vandyk et al., 2021).

10. Channels, tunnel valleys and eskers

Channels are excavated by many non-glacial pro-
cesses, including SGFs (Talling et al., 2007; Keller et 
al., 2011; Macdonald et al., 2011; Dakin et al., 2013; 
Kneller et al., 2016; Shanmugam, 2016; Baas et al., 
2021). If channels are later filled with more resist-
ant sedimentary material, and the material around 
erodes away, the resulting land form will appear 
to be a longitudinal ridge, i.e., a topographic rever-
sal. In northern Africa and the Arabian Peninsula, 

Fig. 7. One of the smallest (former) fjords, which is now the c. 2-km-long lake Ågvatnet next to the small village of Å in 
Lofoten, Norway. All characteristic appearances of fjords are present even in these smallest fjords. They are narrow, 
overdeepened and display a prominent transverse ridge at the outlet. At this former fjord the ridge has been the 
foundation for the road and house in the lower picture (the fjord is barely visible behind the house and ridge).
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there are thousands of channels which have been 
filled with sediment, and many of these now dis-
play an appearance that is in part similar to eskers 
(Zaki et al., 2018, 2020, 2021). Le Heron et al. (2018) 
recognised that there are no “suitable modern ana-
logues” to channels which have been interpreted to 
be Ordovician tunnel valleys, which make the inter-
pretations equivocal (Molén, 2023a).

Pleistocene and recent esker sediments are com-
monly sorted, with large rounded clasts in the bot-
tom middle, and then finer on top and at the mar-
gins, even though many eskers are made up mostly 
from sand. There is often tectonic deformation 
displayed by eskers. Large clasts, which have col-
lapsed from the overlying glacier, are often present 
on their tops (Frakes, 1979). There is some evidence 
of tectonics in longitudinal landforms which have 
been interpreted as eskers (Allen, 1975; Biju-Duval 
et al., 1981), but not so much that it has to be more 
than local deformation which could have occurred 
simply by gravitational collapse. No large clasts 
have been documented on top of esker-like forma-
tions from pre-Pleistocene deposits.

11. Laminated sediments

Recent experiments have shown that clay laminae 
can form as quickly as sand or silt laminae, not 
only in turbidites but also during slower deposition 
(Schieber et al., 2007, 2013; Sutherland et al., 2015; 
Yawar & Schieber, 2017). This process results from 
clay particles flocculating and therefore quickly 
sinking. Earlier settling experiments with flumes 
had disintegrated these floccules, and therefore clay 
particles did sink much more slowly. A recently de-
scribed process which more clearly unfolded how 
laminae are quickly produced and able to cover 
large areas, is a combination of high fluid shear and 
sediment concentration (Al-Mufti & Arnott, 2023). 
In conclusion, there are many indications that pre-
sumed varves in pre-Pleistocene outcrops have been 
deposited much more quickly than on a yearly basis, 
which may be discovered by detailed studies (Mat-
ys Grygar, 2019; Smith, 2019, 2023 reinterpreting 60 
recently published papers on this subject; Kochhann 
et al., 2020; Isbell et al., 2021; Molén, 2021).

12. Periglacial structures, soft sediment 
deformation and tectonism

Geological features which may appear to be formed 
by permafrost, such as patterned ground and ice 

wedges, also may form by desiccation, small-scale 
tectonics, and almost any volume change in sedi-
ments (Bryan, 1983; Eyles & Clark, 1985; Eyles, 
1990; Tipper et al., 2003; Robinson et al., 2017), and 
they may therefore be easily misidentified (Molén, 
2023c).

Large-scale soft sediment deformation may be 
difficult to evaluate if it is glaciogenic or SGF. So far, 
no clear characteristics have been identified for one 
or the other potential origin (Sobiesiak et al., 2018; 
Rodrigues et al., 2020; Molén, 2023a).

13. Glaciomarine and glaciolacustrine 
environments

Yearly varves only form in fresh water, but apart 
from that there is no great difference between sedi-
mentation in glaciomarine and glaciolacustrine en-
vironments. In Quaternary glaciomarine and glaci-
olacustrine environments there is an abundance of 
linear, transverse and irregular geological features 
(Dowdeswell et al., 2016a, 2016b). In pre-Pleisto-
cene deposits interpreted as glaciomarine or gla-
ciolacustrine these features are generally absent, 
even though subaqueous depositional areas should 
be excellent for the preservation of such geological 
landforms. Single examples of geological landforms 
with such an appearance in ancient deposits may be 
intepreted to be glaciogenic, but there are no large 
areas demonstrating these features, even if the ar-
eas under study ought to display such landforms 
in large numbers (Molén, 2021). Almost the sole 
piece of evidence given for a glaciomarine or gla-
ciolacustrine origin for a pre-Pleistocene outcrop is 
the interpretation of outsized clasts as dropstones 
(this includes the majority of papers mentioning 
outsized clasts; e.g., Freitas et al., 2011; Figueiredo 
& Babinski, 2014, Milana & Di Pasquo, 2019; Molén, 
2023a).

14. Fossil vegetation

Plant fossils, commonly as coal but also separate 
fossils, are often deposited next to or occasionally 
even within diamictites which are interpreted to 
have formed from large-scale Late Paleozoic gla-
ciations. There is evidence for more plant refugia 
than earlier recognised during the last continental 
Pleistocene glaciation (Birks & Willis, 2008; Bin-
ney et al., 2009; Westergaard et al., 2019). Howev-
er, there is no evidence from large forests next to 
the continental glaciers during the Pleistocene, and 
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both recent forests growing at former glaciated 
areas and Pleistocene refugee plants have typical 
cold weather species (e.g., Picea, Larix, Betula). The 
fossil plants stratigraphically and palaeogeograph-
ically next to Late Palaeozoic diamictites are con-
sidered to be near continental glaciers, or close to 
palaeopoles in the same sedimentary successions 
as geological features that have been interpreted 
to be glaciogenic. Therefore these plants are often 
considered to have been adapted to cold climate. 
However, these plants commonly display large, 
complete, non-toothed leaves which are typical of 
warm-weather plants, possibly subtropical or trop-

ical, and not small, toothed leaves indicative of po-
lar/subpolar climates (Götz et al., 2018; DeVore & 
Pigg, 2020; Gastaldo et al., 2020a, 2020b; Mays et al., 
2020; Tripathy et al., 2021). Plants are better climate 
indicators than sediments, which would undermine 
interpretations of former cold climates in the Late 
Palaeozoic.

15. SEM studies

After reorganisation of patterns of data from older 
studies, and conducting process-oriented studies of 

Fig. 8. SEM images of quartz sand grains from diamictites which have been interpreted to be glaciogenic; compare these 
to grains in Figure 9. Except for a few grains displaying fractures, these are more or less spherical and display a com-
bination of regular abrasion all over the grain surfaces combined with weathered surfaces, i.e., surface microtextures 
which are typical of multicyclical grains. The grain surfaces display no evidence of glaciation, i.e., irregular abrasion 
and especially irregularly abraded fractures. A few grains display fractures that are either sharp or otherwise regu-
larly abraded all over the fracture faces, i.e., these grains are still not similar to glaciogenic grains but only display 
fractures that are produced in any high-energy environment and no irregular abrasion. A – Ordovician Pakhuis 
Formation, South Africa; B – Carboniferous Dwyka Group, South Africa; C-D – Hirnantian Kosov Formation, Czech 
Republic. C is the most common appearance; D is rare; E-H – Neoproterozoic diamictites, Varanger, Norway. E, G 
and H display the most common appearances; F is rare. Notice the non-abraded sharp fractures in F, indicating only 
fracturing, yet no abrasion following fracturing.
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how surface microtextures on quartz sand grains 
originate in different environments (Molén, 2014, 
2017), this area of research has become a well-func-
tioning working tool for the study of all kinds of 
sediments, including diamictites (e.g., Mahaney, 
2002; Molén, 2014, 2017, 2023a; Molén & Smit 2022).

Minerals are fractured in many environments, 
and therefore solitary fresh and sharp fractures by 
themselves do not indicate glaciation (Molén, 2014). 
Glaciers simultaneously both irregularly fracture 
and irregularly abrade rock material (i.e., not even-
ly/regularly spread on rocks or grain surfaces but 
more or less in separate patches), so in glaciogen-
ic sediments evidence from both these processes 
is present. There is often overprinting of fractured 
and abraded surface microstructures on glaciogenic 
grains, i.e., recurrent fracturing and irregular abra-
sion on the same grain surface. Therefore there are 
unique combinations of surface microtextures that 
have been generated by glaciers, i.e., fresh fractures 
that have probably at the same time become irreg-
ularly abraded during short, intense contacts with 
hard clasts or bedrock (Molén, 2014). In less ener-
getic environments, e.g., transport by wind or wa-
ter, regular small scale abrasion/comminution will 
spread over the complete grain surface, and such 
abrasion will round off the grain surfaces regularly 

because of the continual and slight abrasion/com-
minution, and also, at the same time, will induce 
physical and/or chemical weathering. Subglacially, 
grains are not abraded constantly, but when abra-
sion takes place it is commonly strong and in more 
confined areas. This has been documented in Pleis-
tocene and more recent deposits and is clearly test-
ed (Mahaney, 2002, Molén, 2014; Kalińska-Nartiša 
et al., 2017, Passchier et al., 2021; Kut et al., 2021; 
Kalińska et al., 2021).

SEM studies conducted on samples from 
pre-Pleistocene diamictites indicate a non-glacial 
origin of Neoproterozoic outcrops in northern Nor-
way (Molén, 2017), Upper Ordovician outcrops in 
South Africa (Rowe & Backeberg, 2011) and in the 
Czech Republic (Štorch, 1990), and in Upper Pal-
aeozoic deposits from the Dwyka Group in South 
Africa (Molén & Smit, 2022). From the evidence 
displayed by macroscopic geological features, there 
is no definitive evidence of glaciation displayed by 
these outcrops (Rowe & Backeberg, 2011; Molén, 
2017; Molén & Smit, 2022) (however, the outcrops in 
the Czech Republic have previously only been mac-
roscopically studied and considered to be of glaci-
omarine origin; Štorch, 1990). Typical examples of 
quartz sand grains from these areas are here shown 
in Figure 8 and are compared to examples of Pleis-

Fig. 9. Typical surface microtextures on quartz sand grains from Pleistocene glacial environments; compare these to 
grain surfaces in Figure 8. All these grains display a combination of multiple fractures, irregular (strong) abrasion 
both on many fractures and on non-fractured parts of the grains. The upper three pictures are from an area of 
granitic and gneissic bedrock, Västerbotten County, Sweden. The lower three pictures are from an area displaying 
mainly Phanerozoic sedimentary bedrock in southern Ontario, Canada. The small areas of weathered parts of the 
grains from southern Ontario are original quartz sand grain surface microtextures from the non-glacial Phanerozoic 
sedimentary bedrock, and are similar to the grain surfaces in Figure 8. More examples of glaciogenic grain surface 
microtextures were published in Mahaney (2002), Molén (2014, 2017, 2023a) and Molén & Smit (2022).
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tocene glaciogenic quartz grains from Scandinavia 
and Canada in Figure 9 (Molén, 2014). The evidence 
is clear cut, where the glaciogenic grains display a 
combination of multiple fractures, irregular abra-
sion is present both on parts of the fractures and on 
non-fractured parts of the grains. The grains from 
(nonglacial) diamictites display a combination of 
more or less spherical grains, and they are regularly 
abraded all over the grain surfaces combined with 
weathered surfaces. They display a few fractures 
that are either sharp or otherwise regularly abraded 
all over the fracture faces. In view of the fact that we 
assume that natural laws have not changed, and the 
process of inducing surface microtextures of (recur-
rent) fracturing and (irregular) abrasion is strictly 
mechanical (purely chemical processes change the 
surfaces in different ways and artificial coatings can 
be easily traced; Somelar et al., 2018; Molén & Smit, 
2022), these features positively indicate that the de-
posits are non-glacial.

16. Discussion

Studies of diamictites have often been based on 
models and have adhered to older interpretations 
as a starting point (e.g., Le Heron et al., 2022b). This 
is reasonable, but progress in sedimentology and 
other research disciplines which may be relevant 
for studies of ancient glaciations and diamictites, 
during the c. 50 last years, have shown that many 
former interpretations need to be abandoned (e.g., 
see: Rodrigues et al., 2020; Kennedy & Eyles, 2021; 
Molén, 2023a). Proxies for ancient climates based 
on geochemistry, including carbon and oxygen iso-
topes, chemical weathering index (CIA), ikaites/
glendonites and cap carbonates, are not set in stone 
either, but may be more clearly connected to envi-
ronment than to climate (Vickers et al., 2023; Molén, 
2024).

If a certain area formerly has been interpreted 
to have been glaciated, then the appearance of geo-
logical features of that area may have been used as 
evidence of glaciation also in other areas, instead of 
searching for field evidence for possible alternative 
interpretations. The geological features most easily 
evaluated which are interpreted to be glaciogenic, 
are as follows:
1. Striated surfaces, where papers may describe 

these as glaciogenic even though the appearanc-
es are different from both Quaternary subglacial 
and iceberg-produced striations and pavements. 
These pre-Pleistocene surfaces are often planar, 
displaying straight and invariably striations and 

grooves (e.g., Fig. 3), displaying appearances not 
observed to have been produced by glaciers in 
the Quaternary, but commonly by SGFs (Table 
1). These pavements are often soft sediment sur-
faces (Le Heron et al., 2020).

2. Outsized clasts interpreted to be dropstones, 
where the patterns of deposition and sedimen-
tary structures are seldom recognised or even 
reported in detail or in great numbers, e.g., the 
often small size of these clasts (one or a few cen-
timetres), or if large size the appearance and 
position may indicate SGFs, for example, in the 
Cryogenian deposits of Namibia (Domack & 
Hoffman, 2011; Hoffman et al., 2021; Le Heron 
et al., 2021a).

3. Small size and number of erratics in diamic-
tites, compared to erratics present in parts of 
the outcrops interpreted by most researchers 
to be from SGFs, and compared to Quaternary 
glaciations.

4. Surface microtextures where researchers have 
to abandon or not refer to documented differenc-
es (e.g., Mahaney, 2002, Molén, 2014) to interpret 
the data in a glaciogenic framework. Soreghan et 
al. (2022, p. 3) wrote that, „More recent work has 
argued that only large-scale fractures that cov-
er at least one-quarter of the grain surface can 
be considered glaciogenic, as smaller scale frac-
tures can be produced in a wide variety of en-
vironments (Molen, 2014).” Those authors had 
to abandon the documentation in the quoted 
paper, of the unimportance of simple fracturing, 
and the mandatory presence of combined abra-
sion and fracturing, as is described in the con-
clusion as, “A glacigenic grain typically exhibits 
largescale fractures (F1) and irregular abrasion 
(A1)” (Molén, 2014, 2023b). Similarly, Le Her-
on et al. (2020) studied grain surfaces on small 
grains displaying minute surface microtextures 
which did not show irregularly abraded glacio-
genic fractures.
Therefore, if the interpretation of an outcrop 

is wrong, then other areas studied with the same 
mindset may also have been misinterpreted. In-
stead, it is always more appropriate to start from 
recent observations and experiments and compare 
the outcrops with recent and Pleistocene geologi-
cal features so as to arrive at a correct interpreta-
tion. Otherwise it may be as Moncrieff & Hambrey 
(1990) suggested, that an ancient outcrop (in this 
case Neoproterozoic) “... does not have a suitable 
modern analogue” (p. 389) and “... can aid interpre-
tation of modern sediments ...” (p. 408), instead of 
the opposite.
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17. Conclusions

It has been shown that many similarly appearing 
geological features may form in different environ-
ments. There are considerable differences in the ap-
pearance of the details of these features, which after 
documentation may indicate a different origin than 
if a study starts with a formerly accepted interpreta-
tion. Often details which are necessary to document 
if the study is going to discriminate if an outcrop has 
been generated by SGFs or glaciation are not con-
sidered, let alone documented, in cases where there 
is a consensus interpretation of a deposit, or where 
the researchers have already developed an interpre-
tative framework. This is a hindrance to progress 
in the area of diamictites, mainly in the documen-
tations of glaciogenic and SGF features. Therefore, 
it may be necessary to restudy many outcrops and 
start with multiple working hypotheses rather than 

with a paradigm, model or formerly long-held in-
terpretation, e.g., not, “Our interpretation builds on 
a rich tradition that envisage a glacial origin ...” and 
“Even diamictites known to have been deposited 
during a major ice age may paradoxically contain 
little to no evidence for direct glacial processes” (Le 
Heron et al., 2022b, pp. 1, 8).

As has been shown earlier, evidence from pat-
terns displayed by appearance, size and sorting 
of erratics, striated surfaces/pavements, outsized 
clasts/dropstones and surface microtextures, is 
easily documented and evaluated if an area/out-
crop/formation is glaciogenic or not (see Table 3). 
For more extensive documentation of the geological 
features mentioned here, and also of other geologi-
cal features which discriminate between glaciation 
and other processes, reference is made to the dis-
cussion, tables and Appendix in Molén (2023a).

Table 3. Diamict Origin Table of geological features formed in environments of glaciation, mass wasting and tectonics. 
Columns display how common a feature may be, and whether it is glaciogenic or non-glaciogenic. Tabulated fea-
tures in the upper part of the table differ substantially between glaciogenic and non-glaciogenic deposits, and the 
more provisionally documented features are in the lower part. Even though the absolute differences are not known 
between different processes, relative values have been provided. In the column for glaciogenic processes, structures 
that form by non-glaciogenic processes in a glacial environment are not included, e.g., not debris flows in a glacial 
environment. However, if clasts in debris flow deposits are glacially striated, this may be evidence of glaciation. By 
contrast, debris flow deposits with no other evidence of a glacial environment than clasts displaying striations that 
may form in debris flows, is not helpful in interpreting a former glaciation.

Feature
Origin

Glacial Non–glacial
Areally continuous 2 1
Areally dispersed 1 2
Large areal extent 2 1
Warm climate sediments 0–1 2
Warm climate fossils 0–1 2
Fine grained and matrix supported 2 1–2
Clast diameter/bed thickness correlation 0–1 2
Sorting and/or grading 0–1 2
Streaks of different deposits/diamictites 1 2
Entrenched contorted slabs of unconsolidated soft sediments 1 2
Fabrics
 strong 2 1
 weak 1 2
 bimodal 2 1
 planar 1 2
 variable in sections 1 2
Erratics 2 2
 low-inclination transport, slopes close to 0.001° 2 1–(2)
> 1–3 m diameter 2 1–(2)
 smaller in “tillites” than in accepted concomitant SGF deposits 0 2
 jigsaw fractures – 1
Striated clasts 1–2 1–2
 subparallel striations 2 1
 parallel striations 1 2
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Feature
Origin

Glacial Non–glacial
 curved and/or random striations 1 2
 crossing striations 2 1
 soft, angular, not striated co-occurring with hard, rounded, striated 1 2
Faceted and/or polished clasts 1–2 1–(2)
Pavement/striations/grooves 2 1
 subparallel striations 2 1
 parallel striations 1 2
 crossing striations 2 1
 polished striations 2 1
 soft-sediment pavements 0–1 2
 sediment pressed down – 2
 pressed-up ridges – 2
 stacked pavements 0–1 1–2
 irregular horizontally and vertically 2 1–2
 regular striations 0–1 1–2
 continue over extensive areas 2 1
 interlaminated sediments/traction carpet – 1
 ripples, laminae – 1
 brecciation 1 1
 overhanging walls 0–1 1
 rock polish chemical (?) 1
Iceberg keel scour marks and mimics 2 0–1
 abundant where present 2 –
 changing directions 2 0–1
 superposed/stacked in same direction – 1
 parallel striations/grooves 1 2
 undulous in cross-section 2 0–1
 evidence of tides, wind and waves 2 0–1
 grounding pits 2 (?)
 glacier grounding-zone wedges 2 0–1
Boulder pavements 2 1–2
Roches moutonnés/plucking 2 (0–1)
 uneven surfaces 0–1 1
Fjords, overdeepened, regular, ridged outlet 2 (0–1)
Eskers (or otherwise not eskers) 2 (0–1)
 sorted deposits 2 1
 large clasts on top 2 (?)
Glaciofluvial restricted by ice, kames 2 –
Dropstones/lonestones 2 2
 random fabric 2 1
 weak fabric 1 2
 varied size of clasts 2 1
 small grain size 1 2
 obvious small size compared to other sediments which are interpreted to be glaciogenic – 2
 correlation: clast size and sediment thickness – 2
 larger clasts in thicker sediments 1 2
 sorted 0–1 1–2
 differently compressed laminae 1 2
 no/little penetration 1 2
 1/3 of clasts penetrate 2 1
 sediment thickness changes around clast 1 2
 lee side structures/movement/wake eddies 1 2
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