
Geologos 18, 3 (2012): 197–209
doi: 10.2478/v10118-012-0010-4

Commonly used earthquake source models

Wenlong Liu1, Yucheng Liu2

1Shanghai Earthquake Administration, Shanghai 200062, China;  
e-mail: wlliu_99@yahoo.com 

2Department of Mechanical Engineering, University of Louisiana, Lafayette, LA 70504, USA;  
e-mail: yucheng.liu@louisiana.edu

Abstract

Several important earthquake source models that have been extensively used in seismological research and ear-
thquake prediction are presented and discussed. A new fault source model is used to explain the earthquake focal 
mechanism solution and tectonic stress field, which play a crucial role in earthquake initiation and preparation. The 
elastodynamic-dislocation theory is demonstrated which provides the theoretical background of most earthquake so-
urce models. Important earthquake source models reviewed here include the double-force-couple point-source model, 
the circular-shear dislocation model, the finite moving-source model, the Brune model, and the spherical explosive 
source model.
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1. Introduction

Tectonics-induced earthquakes are the most 
common and destructive earthquakes. They 
will occur anywhere within the earth where 
sufficient stored elastic strain energy is present 
to drive fracture propagation along a fault 
plane, and usually begin by an initial rupture 
at a point on the fault plane. Fault-model anal-
ysis is used to investigate a force system or dis-
location applied on the fault plane that makes 
the displacement radiation at some distance 
consistent with the recorded seismic waves. 
The study of the fault source model can be 
traced back to the beginning of the 20th century. 
Following the great 1906 San Francisco earth-
quake, Reid (1990) examined the displacement 
of the ground surface around the San Andreas 
Fault. From his observations he concluded 
that the earthquake must have been the result 

of elastic rebound of previously stored elastic 
strain energy in the rocks on either side of the 
fault, which is known as the famous ’elastic-
rebound theory’. 

Kawasumi (1937) identified the quadrant 
distribution of the directions of P-wave first 
motion. However, this is not possible for tele-
seismic distances, and a method must be found 
to compensate for the effects on ray propaga-
tion of the variation of the velocity with re-
spect to depth in the Earth. Byerly (1928) was 
the first to solve this problem by presenting 
a single force couple model to identify the 
fling motion of the two sides of a fault. An im-
proved model, the double-force-couple model, 
was later developed by Honda (1957), which 
can better evaluate the seismic-wave radiation 
of point sources. Based on observation of the 
S-wave radiation patterns, it was found that 
the double-force-couple model is the best in 
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describing the distribution pattern of P-wave 
radiation and S-wave polarizations. 

It is of great help in studying earthquake 
source models to consider the earthquake 
source process as a rapid expansion of the rup-
ture surfaces. The study of earthquake source 
models has two focuses. One is analysis of the 
kinematic model of the earthquake source, the 
objective of which is to find far-field seismic-
wave radiation, based on the temporal and 
spatial distribution of dislocations along the 
rupture surface. The second one is analysis of 
the dynamic model of the earthquake source, 
the objective of which is to find the motion of 
the medium on and near the rupture surface, 
based on the initial stress distribution, medium 
characteristics, and physical laws that govern 
the rupture process. The study of the dynamic 
model increases the insight into the initiation of 
the rupture and its process, while the study of 
the kinematic model provides an approach to 
inverse dynamic parameters of the earthquake 
source from seismograms. 

In their study of the kinematic or dislocation 
model, Burridge & Knopoff (1964) derived the 
integral of displacement caused by seismic dis-
locations under common conditions, using the 
Green’s Function. A number of investigators 
studied the far-field displacement radiation in 
homogeneous, isotropic media caused by spe-
cifically distributed dislocations. Ben-Menach-
em (1961) studied the radiation of seismic sur-
face-waves from finite moving sources; Savage 
(1965) investigated the shear dislocation circle; 
Haskell (1966) and Aki (1972) discovered the 
discontinuous propagation of ruptures; Wyss & 
Brune (1967) studied a complex multi-rupture. 
In the study of the dynamic model, previous 
research interests focused on the propagation 
and stop of ruptures under the complex influ-
ences of friction forces, the non-elastic effect, 
and a heterogeneous initial stress. Aki & Rich-
ards (1980) presented an approach to represent 
earthquake sources in terms of a static moment 
tensor. According to their theory, the usual ap-
proach towards source theory is to model in-
elastic processes due to faulting, explosions, 
etc. as causing a region of an elastic body (the 
source) to undergo a stress-free change of size 
and shape without alerting the elastic prop-

erties of the region. If this change of size and 
shape is expressed as a strain, the seismic mo-
ment density tensor is defined by them as the 
product of such strain and the tensor of elastic 
moduli, based on which the displacement field 
can be determined. The static moment tensor 
model is now a general tool which is used to 
model and explain the seismic source. 

The present contribution is organized as fol-
lows: section 2 reviews the double-force-cou-
ple point-source model and discusses the using 
of this model to explain the earthquake focal 
mechanism solution; section 3 explains the 
dislocation theory in terms of elastodynamics, 
where important equations of motion and their 
solutions are introduced; section 4 introduces 
several common kinematic source models such 
as the circular-shear dislocation model, the fi-
nite moving-source model, the Brune model, 
and the spherical explosive source model. Clas-
sical seismic-rupture models, including unilat-
eral and bilateral ruptures, are also depicted in 
this section. Conclusions are drawn in section 
5. 

2. The double-force-couple  point-
source model

The earthquake focal mechanism (P-wave 
first motion solution) deals with the two pos-
sible fault planes and orientations of princi-
pal stress axes and with dislocation directions 
obtained from the point-source single- and 
double-force-couple models. The single-force-
couple model assumes that the force system 
that acts on the earthquake source is equiva-
lent to a single-force couple at the moment of 

Fig. 1. Single-force-couple model.
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rupture, as shown in Figure 1. The origin point 
in this figure is the earthquake source. The Y-X 
plane is the fault plane and the X-Z plane is an 
auxiliary plane that is orthogonal to the fault 
plane and perpendicular to the rupture direc-
tion. Both planes are called ‘nodal planes’ and 
the intersection line of a nodal plane and the 
earth’s surface is the nodal line. Based on this 
model, it can be derived that the fault plane 
and the auxiliary plane divide space into four 
quadrants; the directions of the P-wave first 
motion in neighbouring quadrants are oppo-
site to each other, and the displacement of the 
P-wave on the nodal planes is zero. These con-
clusions are consistent with the observed dis-
tribution of the direction of P-wave first mo-
tion and radiation images. 

The double-force-couple model assumes 
that the equivalent hypocentral-force system 
is a pair of force couples, the dislocation direc-
tions of which are perpendicular to each other, 
while their resultant couple is zero. The P-axis 
in Figure 2 is the principal compressive stress 
axis and the T-axis represents the principal ten-
sion-stress axis. The Z-axis is the intersection 
line of the two nodal planes, and is called the 
‘neutral principal-stress axis’ or ‘zero axis’; it 
is marked using B or N. The rupture direction 
is along the Y-axis and its angles between the 
P- and T-axes are 45°. Both the single and the 
double-force-couple model yield the same far-
field radiation, but different radiation images 
of the S-wave. Based on the single-force-couple 
model, a maximum amplitude of the S-wave is 
present in two directions, while the double-
force-couple model shows the maximum am-
plitude in four directions. In practice, the maxi-
mum amplitude of the S-wave occurred in four 

directions, which proves that the double-force-
couple model is more accurate in approximat-
ing the focal mechanism. 

According to the double-force-couple mod-
el, the spatial orientations of the P-, T-, N-, 
and Y-axes and of the two nodal planes can be 
determined from the distribution of the first-
motion direction of the P-wave. Nodal-plane 
solutions are usually found using the Wulf net; 
for nearby shocks, the solutions can be directly 
found on a plane. A corresponding accuracy 
should also be provided with the solutions, 
which is the maximum rotating angle about 
the nodal lines. When the angle is less than 5°, 
the accuracy is defined as class I; when the an-
gle is between 5° and 10°, it is defined as class 
II; and when the angle falls between 10° and 
15°, it is defined as class III. To find the nodal-
plane solutions, it is required that a number 
of seismic observatories evenly surround the 
epicentre. Alternatively, Li (1974) presented 
a way to find out the focal mechanism based 
on the amplitudes of the initial motion record-
ed by four observatories. Moreover, Li et al. 
(1973) developed a method to determine the 
nodal-plane solutions for small earthquakes 
based on the recorded first-motion directions 
of small and micro-earthquakes of a single ob-
servatory; they used this method to study the 
average stress field. The two nodal planes in 

Fig. 2. Double-force-couple model.

Fig. 3. Radiation images of P- and S-waves according to 
(A) the single-force-couple model and (B) the double-
force-couple model.
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the double-force-couple model are perfectly 
symmetrical; therefore it is well known that the 
fault plane has to be determined through other 
approaches (distribution of seismic intensity, 
distribution of aftershocks, and field surveys 
into a seismogenic fault). 

There are only few examples where the fo-
cal mechanism has been verified using the seis-
mogenic fault. In a few examples, however, it 
was found that the seismogenic fault correlat-
ed well with the focal mechanism and that the 
directions of the fault plane determined using 
the two approaches are close (with differences 
of no more than 15°). The obtained fault plane 
of the 1974 Yongshan-Daguan earthquake with 
a magnitude of 7.1 1974 is a representative ex-
ample (Table 1).

The obtained P-, T-, and N-axes are the prin-
cipal-stress axes during earthquakes, which are 
not equal to the hypocentral principal-stress 
axes before the main shock. Under plane stress, 
the angle between the sliding surface and the 
P-axis (the fault angle, α) is related to the fric-
tion coefficient, μ, as (following the Coulomb-
Navier equation):

 tg(2α) = 1/μ (Eq. 1)

According to Byerlee (1970), the granite un-
der high confining pressure μ is 

 Μ = 0.6 + 0.5/σn (Eq. 2)

where σn is the normal pressure on the sliding 
surface. It then can be estimated that α ranges 
from 25° to 30° in ~10–30 km under the Earth’s 
surface, so that the direction of the hypocentral 
principal stress before the main shock should 
be along 15° to 20° from the P-axis to the fault 
plane. 

In making integrated nodal-plane solutions 
for small earthquakes, different first-motion 
directions of the P-wave were usually found 
in the same quadrant. We define Ψ as the con-
tradiction ratio of the first-motion signal of the 
P-wave, which equals the ratio between the 
number of contradictory signals and the total 
number of signals. Since one principle stress 
can cause two non-perpendicular fault rup-
tures, Ψ caused by this principal stress will not 
approach zero, and can be calculated as: 

 Ψ = (45° – α)/90° (Eq. 3)

The lower bound of α can be evaluated from 
the maximum Ψ value before the impending 
main shock. The estimated lower bound of α is 

Table 1. Fault plane of the Yongshan-Daguan earthquake (magnitude 7.1) on May 11, 1974.

P-wave first motion 
solution

Field surveys into the 
jilipu fault

Major axis of the 
isoseismal curve

Area in which the 
after-shocks were 

concentrated
fault-plane direction 34–214° 33–213° 35–215° 33° 

fault-plane inclination NE NE NW

Fig. 4. Contradictory signals of the first motion, caused by α ≠ 45° .
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27° for the Beijing-Tianjin-Tangshan-Zhangjia-
kou area and 23° for the Songpan-Pingwu 
area. 

In practice, the principal axis of stress re-
leasing was commonly used as the axis of prin-
cipal stress at the hypocentre before the main 
shock, which is basically an application of the 
Coulomb-Navier law, neglecting the friction. 
To date, there is no good way to estimate the 
frictional coefficient (μ) of the individual rup-
ture surface, so we have to assume μ = 0. This 
assumption does, fortunately, not affect the ac-
curacy and precision of our analysis. 

The stress field near the hypocentre before 
the earthquake may not be consistent with the 
regional or tectonic stress field. Under the in-
fluence of a large-range and long-term stable 
tectonic-stress field, a new stress field will be 
derived as a result of local tectonic movements 
and mutual interactions in the area near the 
hypocentre. The stress field near the hypocen-
tre before the earthquake should be a super-
position of the tectonic-stress field and the de-
rived stress field. Thus, the principal direction 
of the individual earthquake cannot represent 
the direction of the tectonic-stress field. Gener-
ally, the direction of a local tectonic-stress filed 
can be approximated as the principal direction 
of the average stress related to the numerous 
earthquakes occurred in that the earthquake-
affected area. Especially the principal-stress di-
rections of earthquakes with M ≥ 6 are (except 
for strong aftershocks) quite stable and consist-
ent in a large range, which fairly represent the 
direction of the tectonic-stress field. 

It should be mentioned here that it was as-
sumed in the double-force-couple point-source 
model, that the P-, T-, and N-axes are the prin-
cipal-stress axes during earthquakes. However, 
McKenzie (1969) found that this assumption is 
true only if the fault plane is the plane of the 
maximum shear stress, and this is rarely true in 
the earth. Therefore, the accuracy and appro-
priateness of such an assumption need verifi-
cation by future investigations. 

3. Dislocation theory based 
on elastodynamics 

3.1. Integral expression of the solution 
of elastodynamic equations of motion 

Given a continuous linear elastic model with 
volume V and a situation subjected to different 
body forces, fi and fi’, assuming corresponding 
displacements, ui and ui’, the equations of mo-
tion and Hooke’s law can be written as

  (Eq. 4)

  (Eq. 5)

  (Eq. 6)

  (Eq. 7)

where 

and Cijkl is the modulus of elasticity, which is 
symmetrical: Cijkl = Cklij. 

From Equations (4) through (8), the Green-
Volterrra equation can be derived as:

 

  
(Eq. 9)

where S is the boundary surface of a volume, 
V, and nj is direction cosines between ds and 
axis xj. 

Next, the Green tensor can be introduced to 
solve Equation (9). Consider the initial condi-
tion:

 0== ii uu   when t ≤ t0 (Eq. 10)
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S is a free surface so that we get for any vec-
tor r belonging to S:

 σij·nk = 0 (Eq. 11)

Parameter ρfi is a unit-concentrated pulse 
force that acts on r0 along xk at time t0, which 
is:

ρfi = δik·δ(t – t0)·δ(r – r0), k = 
 = 1, 2, 3 (Eq. 12)

We use uik(r, r0, t – t0) to represent the solved 
displacement at r along xl at time t, which is 
a second-order tensor, called the ‘Green tensor’. 
Parameter δ in Equation (12) is the Kronecker-
Dirac delta function, so that δij = 0 when i ≠ j 
and δij = 1 when i = j. Using uik(r, r0, t) and uil(r, 
r1, t1 – t) and a relevant body force and stress to 
replace ui, fi, σij, and ui’, fi’, σij’ in Equation (9), 
and applying initial and boundary conditions, 
we can obtain: 

 Ukl(r0, r1, t1) = uik(r1, r0, t1) (Eq. 13)

Equation (13) indicates that the displace-
ment along xk, which is caused by the unit-con-
centrated pulse force acting at r1along xl, equals 
the displacement along xl which is caused by 
the force acting at r1 along xk. Such a relation-
ship is known as the reciprocity theorem. 

Substituting the unit-concentrated pulse 
force and the corresponding Green tensor from 
Equation (12) into Equation (9) as fi’ and ui’, and 
applying initial conditions, the integral expres-
sion of the solution of elastodynamic equations 
of motion can be solved by using the reciproc-
ity theorem as: 

 

 

  
(Eq. 14)

where the first item represents the effect of 
the stress σij along the boundary surface, S, on 
the displacement field; the second item illus-
trates the influence of the displacement, ui, of 
S on the displacement filed; and the third item 
describes the contribution of the body force, fi, 
to that field. It can be deduced from the above 
example, that solutions of most equations of 
motion can be simply expressed by using of 
the Green tensor, ukl, even though the tensor it-
self might be difficult to formulate for general 
distributions of ρ(r) and Cijkl(r) in a given vol-
ume, V.

3.2. Theory 

The displacement caused by a dislocation 
along a plane Σ which occurred in a given 
volume V at time t = 0 can be approximately 
solved without considering the body force. As-
suming the initial condition:

 0== ii uu   at t = 0 (Eq. 15)

the stress is continuous when passing 
through Σ, and S is a stress-free surface:

ui
+ – ui

- = Δui(r, t), σij·nj = 0, r 
 belongs to Σ (Eq. 16)

The displacement field created by the dislo-
cation then can be solved as:

   

  
(Eq. 17)

Equation (17) is the integral expression of 
the displacement caused by dislocation. Here 
we assume that the plane, Σ, is enclosed with 
a closed curve surface, S (Fig. 5) and that the 
contribution of the surface element, ds, to the 
total displacement during interval dt is:
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(Eq. 18)

It van be deduced from Equation (18) that 
the displacement field of radiation duk caused 
by the element dislocation Δui per unit surface 
and generated per unit time, equals the dis-
placement field created by the resultant couple 
of nine couples which act at the point source. 
The influence of each couple is Δui·Cijlm·nj, and 
the displacement field of the radiation caused 
by Σ is the same as the field created from such 
point sources which continuously distribute on 
the plane, Σ, in media without ruptures. 

In seismic studies, we are more concerned 
about shear dislocation, in which the direction 
of the dislocation (ei) is perpendicular to the 
orientation of rupture plane Σ (ni): eini = 0. As-
suming that the medium is isotropic homoge-
neous, then Cijlm becomes: 

  (Eq. 19)

Substituting Equations (19) and (18) into 
Equation (17), the displacement radiation of 
the shear dislocation can be obtained as:

 

  
(Eq. 20)

This equation shows that the displacement 
radiation of the shear dislocation is equivalent 

to the seismic-wave radiation caused by the 
double-force-couple that acts at point sources. 

A coordinate system can be established, the 
original point of which is assumed to be the 
position of a dislocation element (Fig. 6); the 
dislocation is then expressed as:

  (Eq. 21)

where G(t) outlines the increase of the disloca-
tion, which is also known as the hypocentral-
source time function. The Green tensor, ukl, in 
Equation (21) is the displacement caused by 
the concentrated force in the isotropic, homo-
geneous medium. Substituting (21) into (20) 
and neglecting the item O(1/r2), the displace-
ment field of radiation for a shear dislocation 
element in an isotropic, homogeneous medium 
can be obtained as: 

  
(Eq. 22)

of which the Fourier’s spectrum is:

  
(Eq. 23)

In Equation (22), ρ is the density, c can be 
α or β, which are the velocities of the P- and 
S-wave, respectively. The hypocentral radiant 
intensity is:

  
(Eq. 24)

Fig. 5. A closed-curve surface, S, that envelops Σ.

Fig. 6. Coordinate system composed of O (position where 
the dislocation locates), X1 (direction of dislocation), 
and X3 (orientation of the dislocation plane).
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where m0 is the seismic moment, u∆ denotes 
the average dislocation, and dS is the area of

the dislocation surface element.  in 

Equation (22) represents the influence of the 
hypocentral-source time function; 1/r repre-
sents the geometric diffusion;  ℜj means the ra-
diation pattern, which reflects the effect of the 
position of the observatory. In the coordinate 
system shown in Figure 6, we have:

  

(Eq. 25)

When c = α, j = r; c = β, j = θ and ϕ, we can 
have:

  

(Eq. 26)

  

(Eq. 27)

4. Frequently used kinematic source 
models 

4.1. The circular-shear dislocation model 

In order to obtain far-field displacement ra-
diation, we need first to assume a geometric 
shape of the rupture surface, determine the 
dissemination mode of ruptures, and estimate 
the distribution of dislocation along the rup-
ture surface and the rising shape of the disloca-
tion (hypocentral-source time function), and so 
on. Different assumptions need be taken in the 
case of different objects and study objectives; 
different hypocentral dislocation models are 
thus established. 

The circular-shear dislocation model (Fig. 7) 
is suitable for middle and small earthquakes, 
and assumes (Chen et al., 1976) that (1) the rup-
ture surface is circular; (2) shear fracture starts 
from the centre of the circle and propagates 
radially at a constant velocity, vf; (3) the dis-
location is a Volterra dislocation, which is an 
evenly-distributed dislocation, which is repre-
sented as:

  
(Eq. 28)

where ξ is the distance from a dislocation ele-
ment to the centre of the circle, and G(t) is de-
fined as

 

  
(Eq. 29)

which is the hypocentral-source time function 
and H(t) is the Heaviside function and when t ≥ 
0, H(t) = 1, while for t < 0, H(t) = 0. In Equation 
(29), Ts is the hypocentral time constant and Ts 
= 4a/7βs, where a is the radius of the disloca-
tion circle and βs is the velocity of the S-wave 
at the hypocentre.

Integrate Equation (22) over the above cir-
cular rupture plane and its far-field displace-
ment radiation can be obtained as: 

Fig. 7. The circular-shear dislocation model.
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(Eq. 30)

In Equation (30), “*” means convolution, 
and Fc(t) depends on the area of the dislocation 
surface, S, and on vf as:

(Eq. 31)

where:

  

(Eq. 32)

If G(t) is the Heaviside function H(t), Fc(t) 
reflects the waveform of the body wave dis-
placement (Fig. 8). Thus it can be found that 
the semi-period of the first motion is propor-
tional to the hypocentral radius and that the 
logarithm of the first-motion amplitude is pro-
portional to the logarithm of that radius. 

 The far-field displacement radiation in 
the frequency domain is:

  
(Eq. 33)

In this equation:

  

  

(Eq. 34)

and for a very low ϖ we have:

  
(Eq. 35)

It can be deduced from the above equations 
that the seismic moment, m0, can be deter-
mined from the low-frequency horizontal line 
and that the corner frequency, fc (a frequency 
corresponding to the intersection between the 
low-frequency horizontal line and the high-fre-
quency asymptote) is inversely proportional to 
the hypocentral radius.

4.2. The finite moving-source model 

4.2.1. Unilateral rupture 
The finite moving-source model assumes 

that the rupture surface is a rectangular plane 
and that the rupture propagates along one or 
both sides at a constant velocity. This model Fig. 8. The waveform of the body wave displacement.
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is good for approximating large earthquakes 
within the lithosphere. The reason is that the 
rupture propagation distances along different 
directions are not roughly equal, due to the 
limited depth of the lithosphere. For the sake 
of simplification, all dislocations are assumed 
to be Volterra dislocations. 

Unilateral rupture (Fig. 9) assumes that the 
rupture originates from one side and propa-
gates unilaterally at a constant velocity, vf, of 
which the far-field displacement is:

  
(Eq. 36)

where: 

 

 (Eq. 37)

W and L are the width and the length of the 
rupture plane, respectively. The half period of 
the first motion is:

  

(Eq. 38)

The spectrum of the far-field displacement 
in the frequency domain is:

  

(Eq. 39)

In this equation, sinX/X is called the ‘di-
rectional factor’. A series of nodal points are 
found in the amplitude spectrum, the locations 
of which are determined based on x = nπ (n = 
1, 2, 3…). The corresponding frequency of the 
nodal points fn is:

  

(Eq. 40)

It can be deduced from this equation that 1/
f1 = Tu. The fault plane can be determined using 
either f1 or Tu, as well as its L and vf. 

4.2.2. Bilateral rupture
The bilateral rupture model (Fig. 10) assumes 

(Lin et al., 1979) that (1) the rupture starts from 
a position on the rectangular rupture surface 
and propagates over distances L0 and Lπ along 
two opposite directions; (2) the propagation 
velocities on the two sides are vf0 = vfπ = vf, of 
which the far-field displacement is:

Fig. 9. Unilateral rupture. Fig. 10. Bilateral rupture.
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(Eq. 41)

where:

  

(Eq. 42)

The spectrum of the far-field displacement 
in the frequency domain is:

(Eq. 43)

A special bilateral rupture where L0 = Lπ 
is called a ‘symmetric bilateral rupture’, if 

, the half period of its first

motion , of which the

spectral curve, 
, 
consists of three 

parts: (1) a horizontal part, ω0, (2) attenuation 
parts, ω–1 and ω–2, and (3) two corner frequen-
cies, ω1 and ω2. Moreover, when the length 
and width of the rectangular rupture plane are 
equal to each other, the spectral curve only in-
cludes two parts (ω0 and ω–2) and one corner 
frequency, which is the same as the circular-
shear dislocation model.

4.3. The Brune model

The Brune model (Brune, 1970) is a semi-
empirical and semi-theoretical model which 
explains the rupture mechanisms based on 
stress, and which basically belongs to the 
circular-shear dislocation model. This model 
assumes that: (1) at the moment of rupture, 
a stress which has the same magnitude as the 
released stress but is along an opposite direc-
tion, is applied on the entire dislocation circle; 
(2) the S-wave energy takes up 80% of the total 
seismic-wave energy. Its far-field spectrum is:

  
(Eq. 44)

where ωc is the corner frequency, which is the 
intersection frequency of the high-frequency 
asymptote and the low-frequency asymptote. 
Strictly, the Brune model is only applicable to 
S–waves, but in practice this model is also used 
for P-waves.

4.4. The spherical explosive source model

The spherical explosive source model (Zhu 
et al., 1977) is a virtual model and is commonly 
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applied because it is simple and understand-
able. This model assumes that: (1) the hypo-
centre is a spherical cavity; (2) a pressure, P1, 
is evenly distributed along the inner surface of 
the cavity which suddenly drops to P0 at time 
t = 0; (3) the medium is a Poisson body and λ 
= μ. The spherical explosive source model is 
applicable to P-waves of small and medium 
earthquakes. The far-field radiation of the P-
wave is:

  

  

(Eq. 45)

where . Its far-field spectrum is:

  

  

(Eq. 46)

where ω0 = α/a.

5. Conclusions

Common kinematic source models that are 
commonly used for explaining the earthquake 
focal mechanism, the formation of a tectonic 
stress field, and rupture mechanisms are pre-
sented. These models include single- and 
double-force-couple point-source models, 

a circular-shear dislocation model, a finite 
moving-source model, the Brune model, and 
the spherical explosive source model. The un-
derlying assumptions and the applicability of 
each model are also discussed. Besides that, 
the classical elastodynamic dislocation theory, 
equations of motion and their solutions are 
presented, indicating the correlation between 
the displacement radiation of shear dislocation 
and the seismic-wave radiation. It is concluded 
that the models, approaches, and examples 
discussed here can be widely used for studies 
in seismology and earthquake prediction.
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